Электронные карты экнис. Электронные карты ECDIS Электронно картографическая навигационно информационная система

Реферат на тему

Геоинформационные системы: электронная картография


Введение

1.Что такое электронное картографирование

2.Модели ГИС

3.Решаемые задачи

4. Кому нужны ГИС

5. Краткий обзор средств разработки ГИС

6. Некоторые украинские разработки

Литература


Введение

Информация о реальных объектах и событиях в той или иной мере содержит так называемую пространственную составляющую. Пространственный аспект имеют здания и сооружения, земельные участки, водные, лесные и другие природные ресурсы, транспортные магистрали и инженерные коммуникации. Уже давно доказано, что 80-90 % всех данных составляют геоданные, т. е. не просто абстрактные, безличные данные, а информация, имеющая свое определенное место на карте, схеме или плане.

Каждый из нас хоть однажды в своей жизни работал с бумажной картой. С появлением компьютеров появились и компьютерные карты, которые обладают множеством дополнительных и полезных свойств.


1. Что такое электронное картографирование

В отличие от бумажной карты, электронная карта, содержит скрытую информацию, которую можно использовать по мере необходимости. Эта информация представляется в виде слоев, которые называются тематическими, потому что каждый слой состоит из данных определенной тематики (рис. 1). Например, один слой электронной карты может содержать сведения о дорогах, второй - о проживающем населении, третий - о фирмах и организациях и т. д. Каждый слой можно просматривать по отдельности, совмещать сразу несколько слоев или выбирать отдельную информацию из различных слоев и выводить ее на карту.

Электронную карту можно легко масштабировать на экране компьютера, перемещать в разные стороны, рисовать и удалять объекты, печатать на принтере любые территории. Кроме того, компьютерная карта обладает и другими свойствами. Например, можно запрещать (или разрешать) отображать на экране определенные объекты. Выбрав объект с помощью мыши, можно запросить информацию о нем, например, высоту и площадь дома, название улиц и др.

Именно с появлением электронных карт появился и другой термин «геоинформационные системы» (ГИС). Существуют десятки определений геоинформационных систем (их еще называют и географическими информационными системами). Но большинство специалистов склоняются к тому, что определение ГИС должно базироваться на понятии СУБД. Поэтому можно сказать, что ГИС - это системы управления базами данных, предназначенные для работы с территориально-ориентированной информацией.

Рис. 1. Основу большинства современных ГИС-приложений составляют информационные слои

Важнейшей особенностью ГИС является способность связывать картографические объекты (т. е. объекты, имеющие форму и местоположение) с описательной, атрибутивной информацией, относящейся к этим объектам и описывающей их свойства (рис. 2).

Как было отмечено выше, в основе построения ГИС лежит СУБД. Однако, вследствие того, что пространственные данные и разнообразные связи между ними достаточно сложно описать реляционной моделью, полная модель данных в ГИС имеет смешанный характер. Пространственные данные специальным образом организованы, и эта организация не базируется на реляционной концепции. Напротив, атрибутивная информация объектов (семантические данные) вполне удачно может быть представлена реляционными таблицами и соответствующим образом обрабатываться.



Рис. 2. В электронных картах даже обычная точка может сопровождаться коллекцией фотографий, дающей представление об этой местности

Объединение моделей данных, лежащих в основе представления пространственной и семантической информации в ГИС, образует геореляционную модель.

Любая географическая информация содержит сведения о пространственном положении, будь то привязка к географическим или другим координатам или ссылки на адрес, почтовый индекс, идентификатор земельного или лесного участка, название дороги и др. (рис. 3). При использовании подобных ссылок для автоматического определения местоположения объекта применяется процедура геокодирования. С ее помощью можно быстро определить и посмотреть на карте где находится интересующий вас объект.

Более перспективным является бесслоевой объектно-ориентированный подход к представлению объектов на цифровой карте. В соответствии с ним объекты входят в классификационные системы, которые отражают определенные логические отношения между объектами предметных областей. Группировка объектов разных классов для разных целей (отображения или анализа) производится более сложным способом, однако, объектно-ориентированный подход более близок к характеру человеческого мышления, чем послойный принцип.



Рис. 3. В современных ГИС-приложениях можно производить необходимые расчеты грузоперевозок

2.Модели ГИС

Так как ГИС может работать с двумя существенно отличающимися типами данных - векторными и растровыми, то существует и две модели ГИС.

В векторной модели кодированная информация о точках, линиях и полигонах хранится в виде набора координат X, Y (в некоторых ГИС часто добавляется третья пространственная и четвертая, например, временная координата). Местоположение точки (точечного объекта), например, здания, описывается парой координат (X, Y). Линейные объекты, такие как дороги или реки, сохраняются как наборы координат X, Y. Полигональные объекты типа земельных участков или областей обслуживания хранятся в виде замкнутого набора координат. Векторная модель особенно удобна для описания дискретных объектов и меньше подходит для описания непрерывно меняющихся свойств, таких как плотность населения.

Растровая модель оптимальна для работы с непрерывными свойствами, так как растровое изображение представляет собой набор значений для отдельных элементарных составляющих (ячеек), оно подобно отсканированной карте или картинке.

3.Решаемые задачи

ГИС общего назначения обычно выполняет несколько задач:

Ввод данных;

Манипулирование и управление ими;

Информационный запрос и его анализ;

Визуализация данных.

Для использования в ГИС данные должны быть преобразованы в подходящий цифровой формат. Процесс преобразования данных из бумажных карт в компьютерные файлы называется оцифровкой. В современных ГИС этот процесс может быть автоматизирован с применением сканерной технологии, что особенно важно при выполнении крупных проектов, либо при сравнительно небольшом объеме работ данные можно вводить с помощью дигитайзера. Некоторые ГИС имеют встроенные векторизаторы, автоматизирующие процесс оцифровки растровых изображений. Часто для выполнения конкретного проекта имеющиеся картографические данные нужно изменить. Для совместной обработки и визуализации все данные удобнее представить в едином масштабе и одинаковой картографической проекции. ГИС-технология предоставляет разные способы манипулирования пространственными данными и выделения данных, нужных для конкретной задачи. В небольших проектах географическая информация может храниться в виде обычных файлов. Но при увеличении объема информации и росте числа пользователей для хранения, структурирования и управления данными эффективнее применять СУБД, специальные компьютерные средства для работы с интегрированными наборами данных. При наличии ГИС и географической информации можно получать ответы, как на простые вопросы, так и на более сложные, требующие дополнительного анализа, запросы. Запросы можно задавать как простым щелчком кнопкой мыши на определенном объекте, так и посредством развитых аналитических средств. Процесс наложения (пространственного объединения) включает интеграцию данных, расположенных в разных тематических слоях. Для многих типов пространственных операций конечным результатом является представление данных в виде карты или графика. ГИС предоставляет новые удивительные инструменты, расширяющие и развивающие искусство и научные основы картографии. С ее помощью визуализация самих карт может быть легко дополнена отчетными документами, трехмерными изображениями, графиками, таблицами, диаграммами, фотографиями и другими средствами, например, мультимедийными.

4. Кому нужны ГИС

1. Предпринимателям.

Люди, занимающиеся бизнесом, могут использовать ГИС в разных областях своей деятельности для анализа и отслеживания текущего состояния и тенденций изменения интересующей их области рынка.

2. Руководителям предприятий.

Благодаря возможности ГИС связывать объекты схемы производственного цикла с чем угодно по щелчку кнопки мыши, обеспечивается эффективное управление производственным процессом, предотвращение аварий сводится к минимуму операции, повышается надежность и уменьшается потребность в персонале.

3. Нефтяникам и газовикам.

4. Охранным службам.

ГИС позволит определить оптимальное расположение камер наблюдения и других устройств, выдавать их сообщения в реальном времени, распечатывать отчеты в заданное время.

5. Транспортным службам.

Благодаря ГИС, в любой момент можно узнать, где находятся грузовики, состояние дорожного покрытия, информацию о пробках на дорогах, эффективнее рассчитывать загруженность транспорта и оптимизировать маршрут движения.

6. Пожарникам.

Пожарные команды получают мощное средство по координированию действий отдельных подразделений, по охвату и наблюдению за большей площадью, расчету направления огня и прогнозированию скорости его распространения.

  • Речные портативные УКВ радиостанции
  • Прочие станции УКВ
  • Приемники Navtex
  • РЛО / SART
  • Стационарные станции УКВ
    • Морские станции
    • Речные станции
    • Прочие
  • Морское радиооборудование – оборудование, предназначенное для охраны человеческой жизни на море, обеспечения безопасности мореплавания, управления работой флота и передачи общественной и частной корреспонденции. Для эффективного использования радиооборудования на судах необходимо знать его принципы построения, технические характеристики и особенности эксплуатации. В зависимости от района плавания к морскому радиооборудованию выдвигаются различные требования.

    А1 – в зоне действия береговых УКВ-радиотелефонных станций с использованием ЦИВ.
    А2 – в зоне действия ПВ-радиотелефонных станций с использованием ЦИВ, исключая район А1.
    А3 – в зоне действия спутников ИНМАРСАТ, исключая районы А1 и А2.
    А4 – за пределами районов А1, А2, А3.
    Таким образом, радиооборудование на судне состоит из трех комплексов: аппаратура УКВ-диапазона, аппаратура ПВ/КВ-диапазона и судовая земная станция (СЗС) системы ИНМАРСАТ. Вне зависимости от районов плавания на каждом судне должны быть установлены: УКВ-радиоустановка, РЛО (радиолокационный маяк-ответчик), приемник НАВТЕКС, АРБ (аварийный радиобуй), портативные аварийные УКВ-радиостанции.

    Радиооборудование на судне должно удовлетворять требованиям ГМССБ, указанным в правилах РМРС (Российского Морского Регистра Судоходства) и РРР (Российского Речного Регистра). На каждом судне должен быть размещен запасной источник питания, с помощью которого радиооборудование могло бы обеспечивать связь при бедствии в случае поломки или повреждения главного и аварийного источников энергии. При переходе от одного источника питания к другому, должна срабатывать световая и звуковая сигнализации. Для работы и ремонта оборудования предоставляется техническое обслуживание, которое выполняет следующие процедуры: доставка до места установки, хранение (при необходимости) и установка. Все эти этапы должны выполняться в соответствии с инструкциями в технической документации.

    Качество радиооборудования представляет собой совокупность показателей, определяющих его соответствие современным требованиям науки и техники. К показателям качества прибора относят надежность, эксплуатационные характеристики, экономичность, безопасность, дизайн и т.д. Многие показатели имеют числовое значение и, по существу, определяют эффективность применения любого оборудования на судне.

    На судах водоизмещением свыше 500 р.т. должно быть не менее трех УКВ переносных станций и двух радиолокационных ответчиков. На судах водоизмещением от 300 до 500 р.т. - две станции и 1 РЛО. Также рекомендуется оборудовать суда аппаратурой для приема факсимиле.

    В каталоге товаров компании Вы можете ознакомиться с различными моделями и марками мировых производителей радиооборудования и сделать необходимый заказ.

  • НАВИГАЦИЯ
    • Компасы гироскопические
    • Компасы магнитные
    • Картплоттеры
    • Лаги
    • Метеодатчики
    • Приемники ГНСС GPS/GLONASS
    • Радиолокационные станции
    • Репитеры
    • СКДВП (BNWAS)
    • Регистраторы данных рейса РДР/У-РДР
    • Автоматическая идентификационная система (АИС)
    • Системы приема внешних звуковых сигналов
    • Сонары
    • Спутниковый компас
    • Эхолоты
    • Авторулевые
    • Электронная картография
  • СПУТНИКОВАЯ СВЯЗЬ
    • FleetBroadband
    • Inmarsat LRIT, SSAS (ОСДР, ССОО)
    • Iridium (Иридиум)
    • Спутниковое телевидение
    • Терминалы BGAN
    • Терминалы VSAT

    Спутниковая связь на море в настоящее время является важным средством сообщения с берегом. Спутники различных операторов создают большое покрытие земной поверхности, что обеспечивает связь из любой точки земного шара.

    На судах, поднадзорных классификационным сообществам, используется как обязательное к установке спутниковое оборудование, так и как дополнительное. На небольших судах, катерах, яхтах, спутниковое оборудование используется по усмотрению владельцев и в основном для выхода в интернет.

    Типы оборудования:

    Терминалы Inmarsat LRIT, SSAS (ОСДР, ССОО) – это морское спутниковое оборудование, обязательное для установки на пассажирские, коммерческие и грузовые суда с районами плавания А2, А3, А4.
    - Судовая Система Охранного Оповещения - позволяет отправлять скрытый сигнал тревоги в случае нападения на судно. ОСДР или LRIT - это система опознавания судов и слежения за ними на дальнем расстоянии.
    - Терминалы FleetBroadband – это оборудование морской системы спутниковой связи, дающие широкополосный выход в интернет, обеспечивающие спутниковую телефонную связь, передачу SMS сообщений.
    - VSAT – оборудование, обеспечивающее высокоскоростную передачу данных через спутниковый интернет, что позволяет организовывать даже видеоконференции на борту.

    Так же для этих целей используются терминалы BGAN, отличающиеся от оборудования FBB и VSAT компактностью, мобильностью и скоростью связи.
    Из узкоспециализированного спутникового морского оборудования на судах используются: станция спутниковой связи, антенна приема TV сигнала и, для дальних районов плавания и телефоны, работающие через спутниковые системы связи таких операторов, как Iridium, Inmarsat и Thuraya.

  • АВТОМАТИКА
    • Кренометры
    • Системы автоматики NAVIS
    • Системы автоматики Praxis
    • Системы автоматики МРС
    • Системы контроля расхода топлива
    • Датчики
    • Системы автоматики АБС
    • Системы автоматики Валком

    1. Обслуживание, сервис и ремонт судовой электроавтоматики:
    - автоматика систем дистанционного управления главных двигателей;
    - автоматика судовых электростанций;
    - ремонт и настройка систем ГЭУ;
    - ремонт, наладка и проверка автоматики и аварийно-предупредительной сигнализации главных двигателей (Wartsila, MAN, MAK, SKL);
    - ремонт, наладка и проверка автоматики и аварийно-предупредительной сигнализации вспомогательных и аварийных дизель-генераторов (Volvo Penta, Scania, Deutz, CAT).

    2. Обслуживание, сервис и ремонт электрооборудования общесудовых систем:
    - ремонт, наладка рулевых устройств и автоматики авторулевых;
    - ремонт, наладка, комплексная проверка систем пожарной сигнализации;
    - автоматика котельного оборудования;
    - автоматика систем топливоподготовки;
    - автоматика систем водоподготовки;
    - автоматика систем очистки сточных вод.

    3. Обслуживание, сервис и ремонт электрооборудования палубных механизмов.

    4. Разработка и согласование проектной документации при модернизации и переоборудовании судовых систем автоматики.

    5. Капитальный, средний и текущий ремонт электродвигателей и генераторов любой мощности. Ремонт и настройка системы возбуждения генераторов, настройка параллельной работы генераторов.

  • ДОПОЛНИТЕЛЬНО
    • Гарнитуры и трубки
    • Гидростаты
    • Запасные части для КВУ
    • ЗИП для гирокомпасов
    • ЗИП для тифонов
    • Магнетроны
    • Преобразователи и распределители
    • Системы безбатарейной связи
    • Системы пожарной безопасности
    • Судовые дисплеи и ПК
    • Судовые тифоны
    • Элементы питания (АКБ)
    • Блоки Питания
    • Дополнительные блоки
  • В отличие от бумажной карты, электронная карта, содержит скрытую информацию, которую можно использовать по мере необходимости. Эта информация представляется в виде слоев, которые называются тематическими, потому что каждый слой состоит из данных определенной тематики (рис. 1). Например, один слой электронной карты может содержать сведения о дорогах, второй - о проживающем населении, третий - о фирмах и организациях и т. д. Каждый слой можно просматривать по отдельности, совмещать сразу несколько слоев или выбирать отдельную информацию из различных слоев и выводить ее на карту.

    Электронную карту можно легко масштабировать на экране компьютера, перемещать в разные стороны, рисовать и удалять объекты, печатать на принтере любые территории. Кроме того, компьютерная карта обладает и другими свойствами. Например, можно запрещать (или разрешать) отображать на экране определенные объекты. Выбрав объект с помощью мыши, можно запросить информацию о нем, например, высоту и площадь дома, название улиц и др.

    Именно с появлением электронных карт появился и другой термин «геоинформационные системы» (ГИС). Существуют десятки определений геоинформационных систем (их еще называют и географическими информационными системами). Но большинство специалистов склоняются к тому, что определение ГИС должно базироваться на понятии СУБД. Поэтому можно сказать, что ГИС - это системы управления базами данных, предназначенные для работы с территориально-ориентированной информацией.

    Рис. 1. Основу большинства современных ГИС-приложений составляют информационные слои

    Важнейшей особенностью ГИС является способность связывать картографические объекты (т. е. объекты, имеющие форму и местоположение) с описательной, атрибутивной информацией, относящейся к этим объектам и описывающей их свойства (рис. 2).

    Как было отмечено выше, в основе построения ГИС лежит СУБД. Однако, вследствие того, что пространственные данные и разнообразные связи между ними достаточно сложно описать реляционной моделью, полная модель данных в ГИС имеет смешанный характер. Пространственные данные специальным образом организованы, и эта организация не базируется на реляционной концепции. Напротив, атрибутивная информация объектов (семантические данные) вполне удачно может быть представлена реляционными таблицами и соответствующим образом обрабатываться.


    Рис. 2. В электронных картах даже обычная точка может сопровождаться коллекцией фотографий, дающей представление об этой местности

    Объединение моделей данных, лежащих в основе представления пространственной и семантической информации в ГИС, образует геореляционную модель.

    Любая географическая информация содержит сведения о пространственном положении, будь то привязка к географическим или другим координатам или ссылки на адрес, почтовый индекс, идентификатор земельного или лесного участка, название дороги и др. (рис. 3). При использовании подобных ссылок для автоматического определения местоположения объекта применяется процедура геокодирования. С ее помощью можно быстро определить и посмотреть на карте где находится интересующий вас объект.

    Более перспективным является бесслоевой объектно-ориентированный подход к представлению объектов на цифровой карте. В соответствии с ним объекты входят в классификационные системы, которые отражают определенные логические отношения между объектами предметных областей. Группировка объектов разных классов для разных целей (отображения или анализа) производится более сложным способом, однако, объектно-ориентированный подход более близок к характеру человеческого мышления, чем послойный принцип.


    Рис. 3. В современных ГИС-приложениях можно производить необходимые расчеты грузоперевозок

    Совсем еще недавно электронно-картографические системы представляли собой сложные и очень дорогие системы на базе компьютеров. Такие системы (ЭКНИС – электронно-картографическая и информационная навигационная система; ЭКС – электронно-картографическая система) используются на больших морских судах. Для малых судов можно было бы использовать ноутбуки с упрощенным программным обеспечением, но обычные ноутбуки обладают плохой водо– и влагостойкостью, а специальные защищенные, очень дорогие доступны не каждому.

    За прошедшие 10–15 лет появились компактные, доступные по цене, стационарные и носимые электронно-картографические приборы – карт-плоттеры, наименьшие из которых не уступают по размерам обычному приемнику GPS, которые можно переносить в кармане или в рюкзаке, установить в рубку катера, в надувную лодку, на байдарку. Более того, появились приборы, являющиеся одновременно рыбопоисковым эхолотом и карт-плоттером.

    Современный картплоттер состоит из двух основных частей – носителя картографической информации и плоттера. Необходимые для получения местоположения данные картплоттер может получать от встроенного приемника GPS, либо от любого внешнего приемника.

    Носители картографической информации

    Носителями картографической информации для навигационных систем малых судов (картплоттеров) являются лазерные компакт-диски и мини-картриджи (рис . 60 ). Мини-картриджи применяются в стационарных картплоттерах, а компакт-диски используются для загрузки карт в носимые приборы, размеры которых не позволяют разместить слот для картриджа.

    Если на лазерных компакт-дисках обычно записывается мировая база электронных карт, то на мини-картриджах записывается набор карт различного масштаба отдельных районов, объем которого зависит от емкости картриджа. Существует несколько электронно-картографических систем, используемых для записи карт на картриджи – С-Мар NT+, C-MAX, Blue Chart, Navionics Nav-Charts™, Furuno MiniChart и некоторые другие. Наибольшим покрытием отечественных акваторий – Ладожского и Онежского озер, Финского залива, Баренцева, Белого, Азовского, Черного и Каспийского морей обладают коллекции карт С-Мар и Blue Chart.

    Источниками данных электронных карт С-МАР и Blue Chart являются официальные карты, производимые гидрографическими службами, собственное производство данных по договорам с гидрографическими службами, оцифровка материалов съемки малых гаваней при отсутствии официальных бумажных карт (по заказу местных властей).

    Рис . 60. Носители электронных карт

    Картплоттеры

    Картплоттер (рис . 61, 62 ) – это функционально законченный прибор, содержащий в своем водонепроницаемом корпусе приемник спутниковой навигации (в некоторых моделях приемник может быть и выносным), компьютер с заложенной на заводе-изготовителе программой, монохромный или цветной дисплей, клавиатуру для управления, слот для ввода картриджа или порт для загрузки карт. Обязательным элементом является порт для ввода-вывода информации в международном морском формате NMEA 0183.

    Размеры экранов могут быть самыми различными – от совсем маленьких, размером 40 ? 60 мм, цветных и монохромных экранов носимых картплоттеров Garmin GPS MAP 60 и 76, до крупных 10–15 дюймовых на стационарных судовых плоттерах.

    Рис . 61. Носимый картплоттер

    Все картплоттеры имеют общие принципы работы и управления с помощью курсора и меню, с которыми мы познакомимся с использованием какой-либо популярной модели, например, ChartMaster v6 с цветным 6-дюймовым дисплеем.

    Картплоттер имеет 12-канальный параллельный приемник GPS. Он имеет все полагающиеся ему функции – определение координат, отображение на экране электронной карты положения судна и трассы его перемещения, параметров движения, маршруты, путевые точки и пр. Для навигации на акваториях, на которые нет карт, в картплоттерах обычно имеются страницы с соответствующей графикой, аналогичной имеющейся в обычных приемниках GPS. В данном приборе для этого имеется графический указатель «дорога», в других, в частности, в приборах Garmin, используется указатель «компас».

    Работа с картплоттером

    Управление практически всеми картплоттерами осуществляется, как в компьютере, через систему меню с помощью клавиш – стрелок, джойстика и функциональных клавиш. С помощью меню устанавливают необходимые настройки дисплея, трассы, единиц измерения, охранных зон и пр. и пр., выбираются различные функции, создаются маршруты и путевые точки.

    Рис . 62. Стационарный картплоттер

    Первое включение прибора, как и у приемника GPS, начинается с процесса инициализации. Поскольку этот процесс уже рассматривался в предыдущей главе, на нем останавливаться не будем, а сразу перейдем к работе с картплоттером.

    После включения прибора, как только его приемник GPS захватит сигналы спутников, на экране установится карта района нахождения судна, изображение которого будет располагаться в центре. Если на этот район есть картридж, то на экране будет отображаться подробная карта конкретного участка.

    Обычно на картриджах записываются карты самых разных масштабов – от генеральных до крупномасштабных для портов, или трудных в навигационном отношении участков. Имеющаяся в картплоттере функция ZOOM («масштаб») позволяет выбирать нужный масштаб. В некоторых моделях возможно увеличение масштаба свыше заданного картой за счет растяжки изображения карты. Это создает определенные удобства для судовождения, но не увеличивает детализацию находящегося на экране изображения.

    Движение судна отображается на дисплее одним из двух способов. В первом случае его отметка остается неподвижной в центре экрана на фоне движущейся карты; во втором случае отметка движется от центра к краю экрана и по достижении его возвращается назад одновременно со сдвигом карты. При необходимости может отображаться траектория движения судна, вектор скорости и его текущие координаты.

    Использование курсора

    Важную роль в работе с картплоттером играет курсор. Это – главный инструмент, с помощью которого решается множество задач – измерение дальности и азимута до объектов, определение их координат, вычисление расстояний между объектами, создание путевых точек и маршрутов, получение информации и многое другое. Рассмотрим для примера несколько функций курсора.

    Если в ходе плавания возникнет необходимость определения расстояние до какого-то объекта на карте (до берега или вешки), достаточно навести перекрестие курсора на эту точку, и в информационном окне появятся ее координаты, а также дальность и направление относительно судна. Аналогичным образом получают информацию об отмеченных на карте названиях островов, населенных пунктах, портах, о навигационной обстановке, глубинах и т.п.

    Если навести курсор на какой-либо объект, например, навигационный буй или маяк – в появившемся информационном окне появится полная информация об этом объекте – высота, цвет, цвет и сектора видимости огней и т.п. С помощью курсора можно получить названия не обозначенных на картах островов и населенных пунктов.

    Использование курсора значительно облегчает создание путевых точек и маршрутов. В отличие от приемника GPS, где эта задача решается с помощью бумажной карты с дальнейшим вводом полученных координат через меню, в картплоттере это просто и быстро осуществляется с помощью курсора – достаточно установить его на нужное место на электронной карте и нажать нужную клавишу. Полученную путевую точку затем можно легко отредактировать, присвоить ей какой-либо символ или имя, передвинуть на другое место или удалить.

    Полученные маршруты и составляющие их точки размещаются на специальных страницах в виде таблиц с координатами. Их можно переименовывать, присваивать символы (например, якорь, крест, рыбка и т.п.), изменять координаты, удалять, причем, делать это можно не только в плавании, но и дома, используя для этого режим симуляции.

    После создания путевых точек и сформирования маршрута необходимо проверить на наличие навигационных опасностей на всех его отрезках. Для этого записанный маршрут выводят на карту, где он будет представлен в виде связанных линиями путевых точек, и затем просматривают его на всем протяжении. Если окажется, что на каком-то участке линия проходит через опасное место (остров, каменную гряду, мель), какую-либо точку данного отрезка перетягивают курсором до тех пор, пока эта линия не уйдет с опасного места, после чего снова продолжают проверку последующих участков.

    Плавания по маршрутам

    Под «плаванием по маршруту» будем понимать последовательное движение от точки к точке заранее спланированного и хранящегося в памяти маршрута с использованием технических и программных возможностей приборов, позволяющих контролировать отклонения судна от заданного направления.

    В современных картплоттерах при плавании по маршруту контроль отклонения осуществляется двумя способами – либо по положению отметки судна на проложенной трассе движения, либо с помощью специальных графических индикаторов, используемых обычно в приемниках GPS. Некоторые модели картплоттеров могут объединять на одном экране оба режима, что делает более удобным судовождение в сложной навигационной обстановке.

    Очень полезной функцией контроля за направлением движения судна по маршруту является вектор скорости. Это очень чувствительный и быстродействующий инструмент, позволяющий быстро реагировать на отклонения от генерального курса.

    Если маршрут создан заблаговременно и хранится в памяти прибора, то через меню его выбирают из списка и активируют одним из имеющихся способов, после чего на экране отобразится участок карты с проложенным маршрутом и картплот-тер перейдет в режим навигации. При этом, в окне данных появятся значения направления на первую путевую точку, дальность до нее, время в пути и время прибытия, а графические дисплеи будут показывать отклонения от истинного курса.

    При приближении к активной точке на заданное расстояние прибор подаст звуковой сигнал и сообщение в информационном окне на экране об этом событии.

    По прибытии в первую точку прибор автоматически перейдет в режим движения к следующей точке и т.д., вплоть до прибытия к конечному пункту плавания.

    Плавания по путевым точкам

    Навигация по путевым точкам является частным случаем плавания по маршруту, поэтому принципы использования картплоттера и судовождения одни и те же.

    Путевые точки могут создаваться заблаговременно и храниться в памяти прибора, откуда они могут извлекаться, активироваться с помощью функции «GO TO» и использоваться для навигации. Создание путевых точек в ходе плавания очень эффективно осуществляется с помощью курсора – для этого достаточно навести его перекрестие на нужное место и нажать клавишу «GO TO» – и картплоттер перейдет к навигации на выбранную точку.

    Следует остановиться на одной особой путевой точке «МОВ» (Man Over Board) – «Человек за бортом». Эта путевая точка задается обычно нажатием специальной клавиши, после чего карт-плоттер автоматически переходит к навигации на точку МОВ.

    Сервисные функции

    База информационных данных

    Каждый картплоттер содержит набор информационных данных, содержание и объем которых может быть различным в разных моделях. Часть информационной базы вводится при производстве приборов, а основная часть поступает вместе с электронной картой района.

    Основную часть базы данных составляет навигационная информация, обязательно присутствующая в каждом картплоттере. Сюда входят сведения о глубинах, навигационных опасностях, навигационной обстановке, названия островов, заливов, портов и т.п. Такие данные обычно выводятся автоматически в информационное окно при наложении курсора на данный объект или, в некоторых моделях, при попадании отметки судна в установленную область около объекта.

    Каждый картплоттер содержит информационные данные о приливах и отливах для каждого конкретного района. Они содержатся на отдельной странице, выбираемой через главное меню.

    Второй блок данных может содержать список портов и укрытий для данной карты с расстояниями до судна и направлениями на них, их характеристики (наличие телефона и телеграфа, больницы, нефтебазы, особенности акватории). Нередко список портов выстраивается по возрастанию расстояний до судна, что позволяет в случае необходимости быстро выбрать ближайшее укрытие.

    Пользовательские функции

    Под этим не очень корректным названием будем понимать набор самых разнообразных функций, облегчающих пользователю работу с картплоттером. В каждой модели прибора имеется свой набор функций, поэтому остановимся только на наиболее распространенных.

    МОВ («Человек за бортом»).

    Это одна из важнейших функций, позволяющая одним нажатием клавиши запомнить место упавшего за борт человека и перевести картплоттер в режим навигации на точку падения. После нажатие клавиши точка МОВ автоматически запоминается и сохраняется как активная до тех пор, пока она не будет удалена оператором.

    Функция «возврат к судну»

    При прокладке маршрута или при просмотре карты с помощью курсора можно «заблудиться» – потерять отметку судна. Для быстрого возврата на место судна существует функция, которая может называться в разных моделях «НОМЕ», «Find ship», «Ship» или еще как-нибудь. Нажатием данной функциональной клавиши на экран быстро выводится участок карты, в центре которого находится судно и курсор.

    Запись трасс

    При движении судна любой картплоттер может записывать и сохранять, по желанию пользователя, пройденную трассу. Трасса записывается в виде точек. На коротких трассах эти точки сливаются в линию, но, с увеличением пройденного расстояния, интервал между точками в связи с их ограниченным количеством, автоматически увеличивается.

    Наиболее сложные и дорогие приборы могут хранить несколько трасс вместе с их характерными особенностями и, при необходимости, воспроизводить их, корректировать и использовать для судовождения.

    Навигационные алармы

    Эта функция позволяет вырабатывать сигналы тревоги (предупреждений) в случаях вхождения в установленную зону, при подходе к путевой точке маршрута, к навигационной опасности, при прохождении над местом, где глубина меньше заданной, при дрейфе судна на якоре.

    Каталоги карт

    Некоторые дорогие картплоттеры нередко содержат в себе каталоги карт, позволяющие в плавании легко найти нужный картридж или заказать его. Каталог карт может быть как для района, так и всемирный.

    «Эхолот»

    Эта функция, имеющаяся в некоторых картплоттерах, позволяет считывать с карты текущие значения глубины и отображать их одновременно с картой на экране в цифровой либо в графической форме. Кроме того, прибор может получать значения глубины в формате NMEA 0183 от судового эхолота и отображать их.

    «Видеонаблюдение»

    Некоторые модели картплоттеров имеют возможность работы с телевизионной камерой для наблюдения за надводным и подводным пространством или помещениями судна. Такие видеокамеры обычно поставляются как опции.

    В заключение о бумажной карте. Картплоттер, несомненно, удобнее бумажной карты – он не мнется, не рвется, не намокает, им легко пользоваться, у него более богатые информационные возможности. Однако бумажная карта остается по настоящий день, наряду с вахтенным журналом, основным документом судоводителя, по которым, при каких-либо авариях будут разбираться компетентные органы. Помните об этом!

    Современные технические средства позволяют определять место судна и вести автоматическое счисление координат с высокой точностью (до десятков или сотен метров), обновляя текущие координаты судна практически непрерывно (с дискретностью до нескольких секунд). Однако традиционные методы «ручной» обработки навигационной информации не позволяют в полной мере реализовать возможности технических средств т.к. графическая прокладка обсерваций на морской навигационной карте не только вызывает существенное запаздывание информации, но и неизбежно снижает точность получаемых данных за счет погрешностей прокладки. Необходимость обеспечить непрерывный и объективный контроль за местоположением и движением судна и наблюдаемых целей, автоматизировать измерения и их обработку, представлять судоводителю наглядную и надежную информацию в виде, пригодном для немедленного использования, привела в конечном счете к разработке и использованию электронных карт.

    В настоящее время в судовождении все более широкое распространение получают интегрированные навигационные системы, главной составляющей которых является электронная картографическая навигационная информационная система (ЭКНИС) или ECDIS (Electronic Chart Display and Information Systems). В этих системах на экране дисплея ЭКНИС отображаются навигационные карты и на них выполняются операции по обеспечению безопасности плавания в различных условиях, планированию пути судии и ведению исполнительной прокладки.

    ЭКНИС имеет очень высокий уровень интеграции с возможностью подключения различных датчиков информации:

    Системы позиционирования,

    РЛС-САРП, транспондера,

    Информации о работе двигательно-движительной установки,

    Системы сигнализации и контроля и др.

    Интегрированная автоматизированная навигационная система - система, характеризующаяся комплексным использованием технических средств судовождения для отображения местоположения и параметров движения судна, окружающей обстановки на фоне электронной навигационной карты, а также предназначенная для автоматизированного решения основных задач судовождения.

    Главная составляющая такой системы - электронная картографическая навигационная информационная система - ЭКНИС (ECDIS) - навигационная система, отвечающая соответствующему стандарту и объединяющая информацию технических средств навигации (ТСН) и других систем (РЛС, САРП, АИС) для отображения навигационных параметров местоположения и движения судна, навигационно-гидрографической, гидрометеорологической и другой обстановки на электронной навигационной карте, а также предназначенная для автоматизированного решения основных задач судовождения.

    ECS (Electronic Chart System) - Электронная картографическая система - система, сопряженная с датчиками навигационной информации (гирокомпас, лаг, ПИ GPS). Система ECS не предусматривает работы без бумажной карты.

    Электронная навигационная карта (ЭНК или ENС) - база данных стандартизированная по содержанию, структуре и формату, созданная для использования в ЭКНИС и содержащая в себе всю картографическую информацию необходимую для безопасного мореплавания и дополнитель­ную информацию, относящуюся к навигации.

    Системная электронная навигационная карта (СЭНК или SENC) база данных, полученная трансформированием (конвертированием) ЭНК во внутренний формат ЭКНИС с целью удобства ее использования системой и учета корректуры, а также использования с её помощью других сведений, добавляемых мореплавателем. СЭНК используется в ЭКНИС для формирования на экране изображения электронной карты и автоматизированного решения навигационных задач. Она может включать в себя информацию, поступающую из других источников.

    Формат – определенная последовательность и вид представления информации на носителе. Основным форматом для представления картографической информации в настоящее время является формат DX9, предназначенный для кодирования - декодирования и обмена цифровыми картографическими данными между гидрографическими службами стран-членов МГО и для передачи данных изготовителям ЭКНИС. Ввиду определенных неудобств работы в этом формате внутри электронных картографических навигационных систем при выполнении операций с ЭНК, производители ЭКНИС создают свои внутрисистемные форматы для СЭНК , наиболее соответствующие задачам, решаемым конкретной ЭКНИС.

    Электронная карта (ЭК) - отображение карты на экране ЭКНИС в соответствующем стандарте, получаемое по информации, содержащейся в системной электронной карте. Такое отображение должно являться эквивалентом откорректированной навигационной карты, отвечающей требованиям главы V Конвенции SOLAS-74 с поправками 1995 года.

    Специальная база данных - база данных, хранимая отдельно от СЭНК, информация которой отображается на экране ЭКНИС по требованию оператора или при определенных обстоятельствах.

    ЭК могут отображаться на экране ЭКНИС как в масштабе, которому соответствуют ее данные в КБД, так и в других масштабах.

    Масштаб электронной навигационной карты – компиляционный масштаб ЭНК, т.е. масштаб, зашифрованный в ЭНК и установленный организацией-производителем, при этом картографическая информация отвечает требованиям стандарта МГО по точности оригинала карты.

    В упрощенном виде это можно пояснить следующим образом. Если представить себе электронную навигационную карту в виде файла строго определенного размера, то в этот файл в одном случае можно поместить информацию об обширном районе мирового океана. Очевидно, что эта информация не будет содержать подробных сведений о районе и соответствует карте мелкого масштаба. В другом случае в такой же по размеру файл можно поместить информацию о меньшем по размеру районе. Теперь эта информация будет более подробной т.е. соответствующей более крупному масштабу.

    Масштаб отображения ЭК - соотношение между расстоянием на экране ЭКНИС и истинным расстоянием, нормализованным и и выраженном в условном виде. Можно сказать, что этот масштаб аналогичен понятию масштаба бумажной карты. Если масштаб отображения крупнее масштаба ЭНК то это называется перемасштабированием, если меньше – недомасштабированием. В обоих случаях ЭКНИС выдает соответствующее предупреждение.

    Напомним, что нагрузка карты это общее количество условных знаков и иной информации, содержащееся на карте.

    Для ЭКНИС стандартом определены следующие уровни представления информации на экране и содержание этих уровней (информационная нагрузка дисплея).

    Базовый - объём отображаемых электронной картой данных, который ни при каких обстоятельствах не может быть уменьшен судоводителем-оператором. Данный объём данных отображается на экране ЭКНИС постоянно в любых районах плавания, но не рассматривается как достаточный для обеспечения навигационной безопасности плавания.

    Береговую черту (для полной воды);

    Безопасную изобату для собственного судна, выбранную судоводителем;

    Отдельные подводные опасности с глубинами, меньшими безопасной, в пределах района, ограниченного безопасной изобатой;

    Отдельные опасности, которые лежат внутри района, ограниченного безопасной изобатой.

    данные по отображаемой карте – ее масштаб, вид ориентации карты и режим отображения; едииицы глубин и высот;

    Стандартный - информация, отображаемая при первом вызове электронной карты на экран. Стандартная нагрузка состоит из информации:

    Базовой нагрузки;

    Линии осыхания (осушки);

    Стационарных и плавучих средств навигационного ограждения;

    Границ фарватеров, каналов и т.д.; визуальных и радиолокационных приметных объектов;

    Запретных и ограниченных для плавания районов;

    Границ нарезки морских навигационных карт;

    Предупреждений мореплавателям;

    По желанию судоводителя-оператора объём информации стандартной нагрузки, используемый для выполнения предварительной и исполнительной прокладки, может быть изменён.

    Полный - вся возможная информация, отображаемая на электронной карте, вызываемая по требованию оператора и включающая:

    Стандартную нагружу, значения глубин;

    Подводные кабели и трубопроводы;

    Маршруты паромов;

    Детали всех отдельных опасностей;

    Детали средств навигационного ограждения;

    Элементы геодезической основы карты;

    Магнитное склонение;

    Географические названия и др.

    В настоящее время практически не существует судов, оснащенных ЭКНИС полностью удовлетворяющими требованиям, но есть много судов имеющих на борту подобные системы не полностью отвечающие требованиям. Это и есть системы ECS. К подобным системам предъявляются международные требования и свои национальные требования морских администраций.

    В России введены "Технико - эксплуатационные требования к картографическим системам» (ТЭТ). Они разработаны в соответствии с "Правилами по конвенционному оборудованию морских судов" Регистра и "Общими требованиями к электронному навигационному оборудованию" содержащимися в Резолюции ИМО А.694(17). Требования предусматривают проверку системы по всем параметрам работы и отображения перед установкой на суда.

    1.11.1.6 Перечень основных требований:

    1. Отключение питания.

    В системе должно быть предусмотрено восстановление работы с сохранением всей ранее содержащейся информации при отключении основного питания системы не более чем на 45 секунд.

    2. Отображение информации:

    а) возможность удаления информации с экрана,

    б) масштабы карт должны быть от 1:10 000 до 1: 50 000 000 с возможностью перехода от одного к другому,

    в) перечень выводимых на экран данных о плавании,

    г) возможность ориентации на север,

    д) ECS должна иметь минимум 2 набора цветов (дневной и ночной).

    3. Корректура.

    Должна указываться дата последней корректуры. Наносится в автоматическом и ручном режиме, цвет оранжевый.

    4. Оповещения и предупреждения.

    а) информация о несоответствии масштаба изображения масштабу базы данных,

    б) о режимах работы - навигация и планирование,

    в) сигналы тревог:

    Сбой в работе ПИ,

    Предел отклонения от курса, линии пути,

    Заданная дистанция до точки поворота,

    Заданная дистанция до опасного района,

    5. Дополнительная информация на экране:

    а) совпадение масштабов и ориентации РЛС и ЭНК,

    б) на экран карты можно выводить и убирать радиолокационную информацию вклю­чая информацию о целях.

    6. Требования к дисплею:

    а) высота букв и цифровых знаков должна быть не менее 2 мм,

    б) размеры символов при изменении масштаба должны оставаться неизменными,

    в) диагональ изображения должна быть не менее 300 мм с разрешением 640 х 480

    пикселей.

    7. Рабочие режимы.

    а) должно быть 2 режима: навигация и планирование,

    б) в памяти должно храниться минимум 10 маршрутов по 100 точек,

    в) данные координирования выводятся на экран каждые 5 сек с задержкой не более 2 сек,

    г) в памяти должна оставаться информация о 30 минутах плавания или 6 пройденных миль. На экране должна оставаться траектория с отображением 1 точка за 30 сек или через 0,1 милю,

    д) данные о месте положения архивируются с интервалом, не превышающим 60 минут.

    8.Точность вычислений:

    а) расстояния - наиболее высокая из:

    1 метр при расстояниях до 1000 метров или

    D / 1 000 при расстояниях более 1000 метров,

    б) пеленга - 0,1°,

    в) точность снятия с бумажной карты для нанесения на электронную:

    Линейных объектов (берега, изобаты) - 1 мм,

    Точечных объектов (буи, маяки) - 0,5 мм.

    9. Время перестроения экрана не должно превышать 5 сек.

    Читайте также: