Гиперзвуковой самолет х 15. Самый быстрый гиперзвуковой самолет в мире

Холодная война, которая проходила между США и СССР в 1946-1991 годах, давно закончилась. По крайней мере так считают многие эксперты. Однако гонка вооружений не останавливалась ни на минуту, и даже сегодня она находится в стадии активного развития. Несмотря на то что сегодня основные угрозы для страны представляют террористические группировки, отношения между мировыми державами тоже являются напряженными. Все это создает условия для развития военных технологий, одной из которых является гиперзвуковой самолет.

Необходимость

Отношения между США и Россией сильно обострены. И хотя на официальном уровне США в России называют партнерской страной, многие политические и военные эксперты утверждают, что между странами идет негласная война не только на политическом фронте, и но и на военном в виде гонки вооружений. К тому же, США активно применяет НАТО для окружения России своими системами ПРО.

Это не может не беспокоить руководство России, которая уже достаточно давно приступила к разработке летательных аппаратов-беспилотников, превосходящих гиперзвуковую скорость. Эти беспилотники можно оснастить ядерной боеголовкой, и они беспрепятственно смогут доставить бомбу в любую точку мира, причем, достаточно быстро. Подобный гиперзвуковой самолет уже создан - это лайнер "Ю-71", который сегодня тестируется в строгой секретности.

Развитие гиперзвукового оружия

Впервые испытывать самолеты, которые могли летать со скоростью звука, начали в 50-х годах 20 века. Тогда это еще было связано с так называемой Холодной войной, когда две развитые державы (СССР и США) стремились обогнать друг друга в гонке вооружений. Первым проектом стала система "Спираль", которая представляла собой компактный орбитальный самолет. Он должен был составить конкуренцию и даже превзойти гиперзвуковой самолет США X-20 Dyna Soar. Также советский самолет должен был иметь способность развивать скорость до 7000 км/час и при этом не разваливаться в атмосфере при перегрузках.

И хотя советские ученые и конструкторы старались воплотить в жизнь подобную идею, не удалось даже приблизиться к заветным характеристикам. Опытный образец даже не взлетел, однако правительство СССР облегченно вздохнуло, когда американский самолет тоже провалился в ходе испытаний. Технологии того времени, в том числе в отрасли авиации, были бесконечно далеки от нынешних, поэтому создание самолета, который бы мог в несколько раз превышать скорость звука, было обречено на провал.

Впрочем, в 1991 году было проведено испытание самолета, который мог развивать скорость, превышающую скорость звук. Это была летающая лаборатория "Холод", созданная на базе ракеты 5В28. Испытание прошло успешно, и тогда самолет смог развить скорость 1900 км/час. Несмотря на наличие прогресса, разработку после 1998 года прекратили в связи с экономическим кризисом.

Технологии 21 века

Не существует точной и официальной информации о разработке гиперзвуковых самолетов. Впрочем, если собрать материалы из открытых источников, то можно сделать вывод, что подобные разработки осуществлялись сразу в нескольких направлениях:

  1. Создание боевых блоков для межконтинентальных баллистических ракет. Их масса превышала массу стандартных ракет, однако за счет возможности маневрирования в атмосфере перехватить их средствами ПРО невозможно или, как минимум, чрезвычайно сложно.
  2. Разработка комплекса "Циркон" - еще одно направление развития технологии, которая базируется на использовании сверхзвуковой ПРК "Яхонт".
  3. Создание комплекса, ракеты которого могут превышать скорость звука в 13 раз.

Если все данные проекты объединятся в одном холдинге, то совместными усилиями может быть создана ракета воздушного, наземного или корабельного базирования. Если проект Prompt Global Strike, создаваемый в США, будет успешным, то американцы получат возможность поражать любую точку мира в течение одного часа. Россия сможет защититься только технологиями собственной разработки.

Американскими и британскими специалистами фиксируются испытания сверхзвуковых ракет, которые могут развивать скорость до 11200 км/час. С учетом столь высокой скорости сбить их практически невозможно (на это не способна ни одна ПРО в мире). Более того, они даже слежке поддаются крайне сложно. Информации о проекте, который иногда фигурирует под названием "Ю-71", очень мало.

Что известно об российском гиперзвуковом самолете "Ю-71"?

С четом того, что проект засекречен, информации о нем очень мало. Известно, что данный глайдер является частью ракетной сверхзвуковой программы, и в теории он способен долететь до Нью-Йорка за 40 минут. Конечно, эта информация не имеет официального подтверждения и существует на уровне догадок и слухов. Но с учетом того, что российские сверхзвуковые ракеты могут достигать скорости 11200 км/час, подобные выводы кажутся вполне логичными.

По разным источникам гиперзвуковой самолет "Ю-71":

  1. Обладает высокой маневренностью.
  2. Может планировать.
  3. Способен развивать скорость свыше 11000 км/час.
  4. Может выходить в космос при осуществлении полета.

Заявления

На данный момент испытания гиперзвукового самолета России "Ю-71" еще не закончены. Однако некоторые эксперты утверждают, что к 2025 году Россия, возможно, получит данный сверхзвуковой глайдер, и его можно будет оснастить ядерным вооружением. Подобный самолет будет поставлен на вооружение, и в теории он будет способным в течение всего одного часа нанести точечный ядерный удар в любой точке планеты.

Представитель России при НАТО Дмитрий Рогозин заявил, что некогда самая развитая и передовая промышленность СССР отстала от гонки вооружений в течение последних десятилетий. Однако совсем недавно армия начала возрождаться. Устаревшая советская техника заменяется новыми образцами уже российских разработок. К тому же, застрявшее в 90-х годах в виде проектов на бумагах оружие пятого поколение обретает видимые очертания. По словам политика, новые образцы российского вооружения могут удивить мир непредсказуемостью. Вполне вероятно, что Рогозин имеет в виду новый гиперзвуковой летательный аппарат "Ю-71", который может нести ядерный боезаряд.

Считается, что разработка данного самолета началась в 2010 году, однако в США о нем узнали лишь в 2015. Если информация о его технических характеристик является правдивой, то Пентагону предстоит решать сложную задачу, так как используемые в Европе и на своей территории ПРО не смогут оказать противодействие подобному самолету. К тому же, США и многие другие страны окажутся просто беззащитными перед подобным оружием.

Прочие функции

Кроме возможности нанесения по противнику ядерных ударов, глайдер благодаря мощному современному оборудованию радиоэлектронной борьбы сможет производить разведку, а также выводить из строя устройства, оснащенные радиоэлектронной аппаратурой.

Если верить донесениям НАТО, то приблизительно с 2020 по 2025 годы в армии РФ может появиться до 24 подобных самолета, которые смогут незаметно пересечь границу и всего несколькими выстрелами уничтожить целый город.

Планы по развитию

Конечно, нет никаких данных по поводу принятия на вооружение перспективного самолета "Ю-71", однако известно, что его разрабатывают с 2009 года. При этом аппарат сможет не только летать по прямой траектории, но и маневрировать.

Именно маневренность на гиперзвуковых скоростях станет особенностью летательного аппарата. Доктор военных наук Константин Сивков утверждает, что межконтинентальные ракеты могут развивать сверхзвуковую скорость, но при этом они действуют как обычные баллистические боеголовки. Следовательно, их траектория полета легко рассчитывается, что дает возможность системе ПРО их сбивать. А вот управляемые летательные аппараты представляют серьезную угрозу противнику, поскольку их траектория является непредсказуемой. Следовательно, невозможно определить, в какой точке будет выброшена бомба, а так как точку сброса определить нельзя, то и траектория падения боеголовки не просчитывается.

В Туле 19 сентября 2012 года на заседании военно-промышленной комиссии Дмитрий Рогозин заявил, что вскоре следует создать новый холдинг, задача которого будет заключаться в развитии гиперзвуковых технологий. Сразу же были названы предприятия, которые войдут в состав холдинга:

  1. "Тактическое ракетное вооружение".
  2. "НПО машиностроения". На данный момент предприятие разрабатывает сверхзвуковые технологии, однако на данный момент компания находится в составе структуры Роскосмоса.
  3. Следующим членом холдинга должен стать концерн "Алмаз-Антей", который нынче занимается разработкой технологий воздушно-космической и противоракетной отрасли.

Рогозин считает, что подобное слияние необходимо, однако юридические аспекты не позволяют ему состояться. Также отмечается, что создание холдинга не предполагает поглощение одной компанией другой. Это именно слияние и совместная работа всех предприятий, что позволит ускорить процесс развития гиперзвуковых технологий.

Председатель совета при Минобороны РФ Игорь Коротченко также поддерживает идею создания холдинга, который бы занимался разработкой гиперзвуковых технологий. По его словам, новый холдинг действительно необходим, ведь он позволит направить все усилия на создание перспективного вида вооружения. Обе компании обладают большими возможностями, однако по отдельности они не смогут достичь тех результатов, которые возможны при совмещении усилий. Именно вместе они смогут внести вклад в развитие оборонного комплекса РФ и создать самый быстрый самолет в мире, скорость которого превзойдет ожидания.

Оружие как инструмент политической борьбы

Если к 2025 году на вооружении будут стоять не только гиперзвуковые ракеты с ядерными боеголовками, но и глайдеры "Ю-71", то это серьезно укрепит политические позиции России в ходе переговоров с США. И это совершенно логично, ведь все страны в ходе переговоров действуют с позиции силы, диктуя противоположной стороне выгодные ей условия. Равные переговоры между двумя странами возможны только при наличии мощного вооружения у обоих сторон.

Владимир Путин в ходе выступления на конференции "Армия-2015" заявил, что ядерные силы получают новые межконтинентальные ракеты в количестве 40 штук. Это оказались именно гиперзвуковые ракеты, и они могут на данный момент преодолевать существующие системы ПРО. Член экспертного совета военно-промышленной комиссии Виктор Мураховский подтверждает, что с каждым годом МБР совершенствуются.

Также Россия проводит испытания и разработку новых крылатых ракет, которые способны летать на гиперзвуковых скоростях. Они могут подходить к цели на сверхмалых высотах, что делает их практически незаметными для радаров. Более того, современные комплексы ПРО, находящиеся на вооружении НАТО, не могут поразить подобные ракеты из-за низкой высоты полета. К тому же, в теории они способны перехватывать цели, движущиеся при скорости до 800 метров в секунду, а скорость самолета "Ю-71" и крылатых ракет намного выше. Это делает системы ПРО НАТО почти бесполезными.

Проекты других стран

Известно, что Китай и США также разрабатывают аналог российскому гиперзвуковому самолету. Характеристики моделей противников пока что неясны, но уже можно считать, что китайская разработка способна составить конкуренцию российскому летательному аппарату.

Известный под названием Wu-14 китайский самолет испытывался в 2012 году, и еще тогда он смог развить скорость свыше 11000 км/час. Впрочем, о вооружении, которое способен нести этот аппарат, нигде не говорится.

Что касается американского беспилотника Falcon HTV-2, то он был испытан несколько лет тому назад, но на 10 минуте полета он разбился. Однако до него тестировался гиперзвуковой самолет Х-43А, которым занимались инженеры NASA. В ходе испытаний он показал фантастическую скорость - 11200 км/час, что превышает скорость звука в 9.6 раза. Опытный образец был испытан в 2001 году, однако тогда в ходе испытаний его уничтожили из-за того, что тот вышел из под контроля. Но в 2004 году аппарат был успешно испытан.

Подобные испытания Россией, Китаем и США ставит под сомнение эффективность современных систем ПРО. Внедрение гиперзвуковых технологий в военно-промышленной отрасли уже сегодня производит настоящую революцию в военном мире.

Заключение

Конечно, военно-техническое развитие России не может не радовать, и наличие подобного самолета на вооружение армии - это большой шаг при улучшении обороноспособности страны, однако глупо полагать, что другие мировые державы не предпринимают попытки в разработке подобных технологий.

Даже сегодня при свободном доступе к информации через интернет, мы очень мало знаем про перспективные разработки отечественного вооружения, а описание "Ю-71" известно только по слухам. Следовательно, мы и близко не можем знать, какие технологии прямо сейчас разрабатываются в других странах, включая Китай и США. Активное развитие технологий в 21 веке позволяет быстро изобретать новые виды топлива и применять незнакомые ранее технические и технологические приемы, поэтому развитие летательных аппаратов, в том числе военных, идет очень быстро.

Стоит отметить, что развитие технологий, позволяющих достичь скорости самолета, превышающей в 10 раз скорость звука, отразится не только в военной, но и гражданской сфере. В частности, такие известные производители лайнеров как Airbus или Boeing, уже заявляли о возможности создания гиперзвуковых самолетов для осуществления пассажирских авиаперевозок. Конечно, подобные проекты пока что только в планах, но вероятность разработки таких самолетов уже сегодня достаточно велика.

Первое предложение о создании самолета, способного превысить скорость звука в пять и более раз (будущая программа Х-15), появилось в 1951 году в недрах правительственного Hационального управления по аэродинамике (NACA), предшественника NASA, которая была официально создана 1 октября 1958 года. Руководство HАСА, в принципе понимая важность этой проблемы, не проявляло особого рвения в реализации его. Это было и дорого, и технически сложно, и неизвестно чем все это могло кончиться. Однако отдельные сотрудники HАСА, по собственной инициативе, проводили исследования возможности создания летательных аппаратов подобного типа. Hовый импульс программа получила в 1953 году, когда этой же проблемой озадачились в Военно-воздушных силах и в Военно-морских силах США. Естественно, и авиация, и флот рассматривали этот самолет, в первую очередь, как боевую машину. Научные исследования стояли на втором плане, но, надо отдать должное американским военным, они прекрасно понимали, что не решив чисто научные проблемы, они не получат боевую машину. Однако уже к следующему году армейские круги осознали, что в одиночку им этот проект не поднять ни с научной, ни с финансовой точек зрения. Результатом этого осмысления стал меморандум о сотрудничестве между ВВС, ВМС и HАСА, подписанный 23 декабря 1954 года. Согласно этого меморандума создавался трехсторонний рабочий орган, получивший название Комитет Х-15, который координировал все работы по этой программе. На HАСА возлагались функции контроля за реализацией проекта в целом. ВВС брали на себя изготовление самолета и его приемные испытания на заводе-изготовителе. Затем самолет передавался HАСА, которая проводила программу исследований, с привлечением как своих пилотов, так и пилотов из Воздушных сил и Военно-морских сил. Как впоследствии указывали участники проекта, Комитет Х-15 имел, в большей степени, психологическое и политическое, чем какое-то практическое значение. Правда, это очень помогало в получении бюджетных денег. Когда следовала ссылка на трехсторонний комитет, как правило, деньги тут же выделялись. Именно с момента подписания меморандума можно говорить о рождении ракетного самолета Х-15. Среди американских компаний был объявлен конкурс. Официальное предложение на подачу заявок было разослано 12 авиационным компаниям 30 декабря 1954 г., а 4 февраля 1955г. четырем моторостроительным компаниям было предложено заключить контракт на производство ракетного двигателя. С компанией Норт Америкэн в ноябре 1955 г. был заключен контракт на производство трех самолетов Х-15 (NA-240), а с компанией Риэкшн Моторз Инк. (Reaction Motors Inc.) в сентябре 1956г. - на производство двигателя XLR-99.
Проект, представленный Hорт Америкэн, предусматривал строительство самолета длиной 15 метров с крыльями стреловидной формы с размахом всего-навсего 6,5 метров. Крылья предполагались относительно тонкими и небольшими по площади. Вес самолета составлял около 7 тонн, а после заправки топливом увеличивался до 16,5 тонн. На самолет предполагалось установить жидкостный ракетный двигатель с тягой 27 тонн. Так как продолжительность работы ракетного двигателя составляла всего 80-120 секунд, предполагалось, что на высоту 15 километров самолет будет доставляться с помощью специально переоборудованного для этих целей бомбардировщика B-52, а затем будет происходить разделение самолета-носителя и ракетного самолета, и дальнейший полет будет происходить с использованием ракетного двигателя. Два бомбардировщика Boeing B-52A были модифицированы для подвески ракетоплана под правой консолью крыла, между фюзеляжем и ближней к нему парой двигателей, получив обозначение NB-52A и NB-52B. Посадка производилась на скольжении.
Основными задачами, которые ставились перед программой Х-15 были следующие: создание мощного многократно используемого пилотируемого самолета для высотных скоростных полетов; исследование аэродинамических процессов при таких полетах; создание и проверка работоспособности систем управления для таких самолетов; исследования воздействия условий полета на организм человека; создание специальных костюмов для пилотов самолетов. С использованием самолета Х-15 предполагалось достигнуть скорость полета около М=6 и высоты 76000 метров.
Строительству и облету опытного образца предшествовали не только обычные аэродинамические и прочностные испытания, но также исследования аэродинамического нагрева (исследования проводились на моделях, выполненных в масштабе 1:15, в диапазоне чисел Маха 0,6-7,0) и специальная подготовка пилотов. Будущие пилоты самолета Х-15 должны были выполнить 2000 "полетов" на тренажере, пройти испытания на центрифуге, в условиях высоких и низких температур окружающей среды, малых давлений и в состоянии невесомости (испытания в условиях невесомости проводились на транспортном самолете).
Первый самолет Х-15 был построен в середине октября 1958 года и с завода доставлен на авиабазу Эдвардс в штате Калифорнии. Перевозка самолета сопровождалась большой помпой и вниманием средств массовой информации. Программа Х-15 привлекла большое общественное внимание, особенно после того как Советский Союз выиграл гонку за первый спутник, а гонка за первый полет человека в космос еще не началась. Второй экземпляр самолета Х-15 был готов к апрелю 1959 года, а третий - к июню 1961 года.
10 марта 1959 г. был совершен первый полет Х-15 на подвеске самолета Boeing NВ-52А. Первый испытательный полет состоялся 8 июня 1959 года. Самолет, который пилотировал летчик-испытатель фирмы North American Скотт Кроссфилд, был отделен от самолета-носителя Б-52 и начал свободный полет. Двигатель во время этого полета не включался, однако даже при этом самолет плохо слушался пилота и совершил несколько совершенно неожиданных разворотов. Лишь мастерство пилота позволило ему управлять машиной и совершить через 5 мин благополучную посадку на дне высохшего соленого озера, находящегося на территории авиабазы Эдвардс. Инженеры корпорации Hорт Америкэн достаточно быстро изменили систему управления самолета, что сделало полеты более безопасными. Следующий полет состоялся 17 сентября 1959 года и впервые производилось включение ракетного двигателя. Правда, штатный двигатель XLR-99 к тому времени еще не был готов и полет совершался с использованием двигателей XLR-11, которые ранее использовались на самолетах Х-1 . Однако даже использование этого двигателя позволило достигнуть скорости свыше 2000 км/ч. Именно с этого момента начинаются интенсивные испытательные полеты самолета Х-15.
Однокамерный двигатель XLR-99 был опробован 15 ноября 1960 г.
Всю программу испытаний самолета Х-15 можно хронологически разделить на три этапа. Первый продолжался с 1959 по 1962 год. Уже на первом этапе удалось достигнуть всех тех целей, которые ставили перед собой организаторы и участники проекта. Была достигнута скорость 6 Махов, высота 75190 метров над поверхностью Земли, удалось получить большой объем научной информации по тепловым процессам и аэродинамике. В частности, исследователи установили поразительное соответствие между аэродинамическими процессами, полученными при моделировании и в условиях реального полета. Из других зримых и понятных результатов, например, было установлено, что увеличение скорости самолета с 3 до 6 Махов, приводит к увеличению температуры поверхности самолета в 8 раз. Физиологи установили, что нормальным для пилотов Х-15 является частота сокращений сердечной мышцы (пульс) от 145 до 180. Было получено много других интересных данных, однако поломки иногда портили настроение изготовителям и испытателям. К счастью обходилось без серьезных повреждений и без отсрочки программы испытаний.
Во время третьего полета второго опытного образца (5 ноября 1959) в одной из камер двигателя произошел взрыв. Во время вынужденной посадки Скотта Кроссфилда на дно высохшего соляного озера самолет потерпел аварию. Было повреждено хвостовое оперение и самолет вышел из строя на 3 месяца. Полеты (на первом опытном образце) были продолжены 23 января 1960 г.
Подобные неисправности происходили в будущем, но, используя реальный опыт С. Кроссфилда, другие пилоты отрабатывали данную нештатную ситуацию на тренажере. Приблизительно в это же время на заводе Hорт Америкэн, где собирался третий экземпляр, при наземных огневых испытаниях двигателя произошел взрыв. Пришлось двигатель восстанавливать. Третий экземпляр был облетан 20 декабря 1961 г.
Помехи для реализации программы исследований приносила и погода. Бывало, что над авиабазой Эдвардс, откуда стартовали самолеты, стояла прекрасная погода, но на большой высоте была облачность и полеты переносились. Тем не менее экспериментаторы медленно, но верно двигались вперед.

О 15 летнем юбилее первого полёта самолёта Х-32, экспериментального прототипа "единого ударного истребителя" (Joint Strike Fighter) компании Boeing, который, проиграл в конкурентной борьбе другому прототипу, X-35 компании Lockheed Martin.

В результате тех давних событий ВВС США, авиация ВМС США и авиация КМП США имеют сегодня счастье обретения самолётов F-35 разных модификаций.)

Герой повествования позирующий во всеоружии. Реальность оказалась другой


В связи с упомянутой датой хочу написать что боевая маневренность X-32A была лучше чем у F-35A, и доберись детище Boeing до серии, вероятно ВВС США не попали бы в сегодняшнюю дурацкую ситуацию, когда в учебном ближнем маневренном воздушном бою F-16D Block 40 отягощенный ракетами и ПТБ "нагибает" пустой F-35A ", а главе Боевого авиационного командования ВВС США, генералу Герберту Карлайлу, в ответ приходится лишь заявлять "он разработан не для этого" (в смысле не для маневренного воздушного боя).

Для того чтобы понять что X-32A аэродинамически превосходил X-35A желающие могут изучить вот этот вот старый доклад , в котором конечно много букв, но так же есть и несколько графиков с таблицами.

Авторы доклада 14 лет назад провели VLM анализ аэродинамики математических моделей планеров конкурирующих прототипов JSF (результаты отражены на стр. 12-15) и пришли к выводу что X-32A превосходит X-35A. В связи с трудностями расчёта точных значений волнового сопротивления у авторов имелись сомнения в степени этого превосходства, но в том что исходя из X-32A превосходит X-35A, они не сомневались.

Впрочем авторы доклада верно предсказали и победу в конкурсе компании Lockheed Martin, исходя из того что ВМС и КМП США интересовала не какая то там маневренность по запасу энергии в ближнем воздушном бою, а взлетно-посадочные характеристики. Если бы вопрос решался только между ВВС и ВМС, то может быть X-32 и победил бы в конкурсе. Однако вентиляторная схема укороченного/вертикального взлёта и вертикальной посадки выглядела более надёжно, к тому же обещала большую тягу. Так что думаю решающим голосом склонившим чашу весов в пользу X-35A был голос КМП США.

Assuming both demonstrators are successful in meeting performance goals-which they are expected to be-and there is no major difference in performance, the cheaper concept will be selected. But Boeing’s demonstrator is dissimilar from production airplane!

Ps curves indicate generally but marginally better performance for X-32, but the curves are known to be inaccurate with wave drag

STOVL may become key issue. Lift fan concept produces greater thrust, offers MUCH more bringback capability unless Boeing can DRASTICALLY cut weight-and weight was already a problem for the Boeing STOVL variant

Advantage: Lockheed-Martin

Air Force may want X-32, but Navy likely to opt for better performance of X-35C at lower regimes where Ps is most likely to be used-subsonic to transonic dogfights and maneuvering.

USMC almost assuredly will select better STOVL performance of X-35B over X-32.

Given marginal advantage of X-32A over X-35A, performance gains for Air Force will be insignificant, and X-35 will be selected.

HOWEVER, if the X-32 significantly outperforms the X-35, the services may attempt to choose different aircraft. Since the costs would be prohibitive, the services will have to settle for a single aircraft, or the program will be killed. Almost assuredly they will settle for a common aircraft.

Отмечу кстати что не только в ближнем маневренном воздушном бою, но и как "транспортная система" для доставки боНб , проект JSF от Boeing превосходил проект Lockheed Martin. Использовав объёмы относительно толстого трапециевидного крыла разработчикам фирмы Boeing удалось превратить своё детище в летающий бак с керосином, способный вместить up to 20,000 pounds of fuel , то бишь свыше 9 тонн топлива. В результате чего расчётная перегоночная дальность с использованием только внутреннего топлива для ударного истребителя фирмы Boeing составляла 1700 морских миль (3150 км), тогда как F-35A может похвастаться перегоночной дальностью с и использованием только внутреннего топлива лишь в 1200 морских миль (2220 км). Соответственно расчётный боевой радиус без ПТБ по профилю ВВС составлял для детища компании Boeing 850 морских миль (1574 км), тогда как для F-35A этот радиус 613 морских миль (1135 км).

P.S. Как так вообще получилось? Учитывая провальные значения разгонных характеристик F-35 на трансзвуке, предполагаю, хотя и не могу этого доказать, что "зажатые" выделением объема в фюзеляже под размещение подъемного вентилятора конструкторы Lockheed Martin не смогли так скомпоновать двигатель, крыло и отсеки вооружения своего детища, чтобы не нарушить правило площадей . В результате у разработанного ими самолёта наблюдается резкий рост волнового сопротивления на трансзвуковых скоростях и, как следствие, отвратительные разгонные характеристики в диапазоне чисел Маха М = 0,8 - М = 1,2.

У конструкторов Boeing с вентилятором проблем не было пр причине его отсутствия, и сдвинув двигатель в переднюю часть самолёта, а так же использовав крыло с большим (55 градусов) углом стреловидности передней кромки они смогли скомпоновать своё детище не нарушив "правила площадей". Им конечно пришлось применить носовой воздухозаборник и обрести в связи с этим некоторые проблемы, но эти проблемы были успешно разрешены.

Какой из всего этого следует сделать вывод на будущее? НЕ СТОИТ в высокой степени конструктивно унифицировать истребитель обычного влёта/посадки и СКВП. НИЧЕГО ХОРОШЕГО из этого НЕ ПОЛУЧИТСЯ.

В июне 1954 г., в США были разработаны тактико-технические требования к экспериментальным самолётам для космических исследований. Эти требования касались проблем аэродинамики в диапазоне скоростей до M=7,0, устойчивости и управляемости, конструкции планера и его оборудования, двигателей, а также психофизиологических аспектов космических полётов. В декабре 1954 г. был объявлен конкурс, в результате которого в 1955 г. создание самолёта было поручено фирме «North American» в кооперации с двигателестроительной фирмой «Reaction Motors». Строительству и облёту опытного образца предшествовали не только обычные аэродинамические и прочностные испытания, но также исследования аэродинамического нагрева (исследования проводились на моделях, выполненных в масштабе 1:15, в диапазоне чисел Маха 0,6-7,0) и специальная подготовка пилотов. Будущие пилоты самолёта North American X-15 должны были выполнить 2000 «полётов» на тренажере, пройти испытания на центрифуге, в условиях высоких и низких температур окружающей среды, малых давлений и в состоянии невесомости (испытания в условиях невесомости проводились на транспортном самолёте).

Первый из трёх опытных образцов North American X-15A был впервые показан публично 15.10.1958 г. Десятого марта 1959 г. был совершен первый полёт X-15A на подвеске соответствующим образом переоборудованного самолёта «Боинг» В-52А (для испытаний трех самолётов X-15A были подготовлены два В-52), а 8 июня были предприняты отделение X-15A от самолёта-носителя и его последующий планирующий полёт. Испытание прошло успешно: самолёт X-15 совершил полёт со скоростью ~ 400 км/ч и спустя 5 мин приземлился на дне высохшего соленого озера, находящегося на территории авиационной базы им. Эдвардса в Калифорнии. Первый полёт с работающим двигателем (на втором опытном образце) был совершен 17.9.1959 г. Во время третьего полёта этого самолёта (6 ноября) в одной из камер двигателя произошел взрыв. Во время вынужденной посадки самолет потерпел аварию. Полеты (на первом опытном образце) были продолжены 4.02.1960 г. (третий был облетан 20.12.1961 г.). Во время испытаний самолёт достиг следующих рекордных скоростей и высот полета:
– 4.08.1960 г. скорость 3514 км/ч; 12.08.1960 г. высота 41 605 м;
– 7.03.1961 г. скорость 4264 км/ч; 31.03.1961 г. высота 50300 м;
– 21.04.1961 г. скорость 5033 км/ч; 12.09.1961 г. скорость 5832 км/ч;
– 9.11.1961 г. скорость 6548 км/ч; 30.04.1962 г. высота 77 720 м;
– 17.07.1962 г. высота 95 935 м; 22.08.1963 г. высота 107 906 м.

В 1962 г. было принято решение о реконструкции второго опытного образца. Самолёт был оснащен двумя дополнительными топливными баками и получил новое обозначение X-15A-2. Первый (планирующий) полёт на нем был совершен 28.6.1964 г. с пустыми баками, а первый полёт с заправленными баками и работающим двигателем осуществлен лишь в ноябре 1965 г. Во время испытаний этого прототипа дважды были достигнуты рекордные скорости:
– 18 ноября 1966 г. скорость 6840 км/ч;
– 3 октября 1967 г. M = 6,72.
Программа исследований была завершена 20.2.1968 г. после выполнения 191 полета на всех трех опытных образцах. Все три пилота-испытателя получили такие же награды, как и американские космонавты. Первым награду получил Р. Уайт (за полет 17.07.1962 г.), затем Р. Рашворт (27.06.1963 г., высота 95 300 м) и Дж. Уолкер (за полет 22.08.1963 г.).

Самолет North American X-15 представляет собой среднеплан, прямое трапециевидное крыло которого имеет относительную толщину профиля 5%, прямолинейную закругленную (радиусом ~ 6 мм в целях уменьшения аэродинамического нагрева) переднюю кромку с углом стреловидности 25° и тупую заднюю кромку толщиной от 54 мм в корневых частях крыла до 9,5 мм на концах. Крыло выполнено без кручения, а угол его поперечной установки равен нулю. Единственными подвижными поверхностями крыла являются закрылки. Система управления - комбинированного типа (реактивно-аэродинамическая). Аэродинамическими исполнительными элементами являются управляемый дифференциальный стабилизатор (с отрицательным углом поперечного V 15°) и управляемые кили (основной и подфюзеляжный). Каждый киль имеет неподвижную (околофюзеляжную) и поворотную (концевую) секции. Поворотные секции служат рулем направления. Подфюзеляжный киль выполнен разъемным. Его поворотная секция устанавливается после подвески North American X-15 под самолётом-носителем и отбрасывается перед посадкой. Неподвижные секции килей оканчиваются четырехстворчатыми тормозными щитками большой эффективности. В случае отклонения щитков на угол 90° при полете с M=2 на высоте 18 000 м тормозная сила достигает значения 53,94 кН (5500 кГ), а на высоте 46 000 м при M=5,0 ее значение составляет 9,81 кН (1000 кГ).

Другими особенностями принятого крестообразного оперения являются малая относительная толщина плоскостей стабилизатора и клиновидный профиль килей, задняя кромка которых имеет толщину порядка 300 мм. Система аэродинамического управления дополнена реактивным управлением, обеспечивающим требуемые летные характеристики самолета при полетах на высоте свыше 36 000 м. Система реактивного управления работает на газообразных продуктах разложения перекиси водорода и оснащена соплами, расположенными в концевых сечениях крыла (4 сопла управления креном) и в передней части фюзеляжа (2 сопла управления по тангажу и 2 управления по курсу). Тяга сопел управления по тангажу и курсу ~44,5 даН (45,4 кГ), а по крену ~ 17,8 даН (18,2 кГ). В целях увеличения безопасности полета реактивное управление по курсу и тангажу выполнено в виде сдвоенной системы. Управление аэродинамической и реактивной системами осуществляется независимо: аэродинамической - с помощью обычной ручки управления и педалей, а реактивной - двумя расположенными по бокам кабины рычагами.

Носовая часть фюзеляжа выполнена в виде конуса с овальным сечением; в ней размещается кабина пилота с монолитным эллиптическим фонарем, остекление которого выполнено из двух пластин толщиной 9,5 и 6,4 мм. Стекла разделены между собой воздушным пространством. Толщина воздушной прослойки составляет 19 мм. Фонарь открывается вверх-назад. Кабина оснащена катапультируемым сиденьем с двумя стабилизирующими поверхностями и выдвижным экраном, предохраняющим пилота от воздействия большого динамического давления. Пилот выполняет полет в высотном скафандре, изготовленном из пятислойной ткани, покрытой алюминиевой краской. В случае аварии на больших высотах весь самолет до момента входа в плотные слои атмосферы выполняет роль капсулы. После этого пилот совершает обычное катапультирование. Носовая часть фюзеляжа второго опытного образца сначала имела заостренный передний обтекатель с удлиняющей иглой. В 1960 г. в результате проведенной модификации всем самолетам были приданы «тупые носы», более оправданные при полетах с большими скоростями.

Центральная и хвостовая части фюзеляжа (круглого сечения) снабжены двумя боковыми гаргротами. Цилиндрическая часть занята отсеком оборудования (за кабиной), баком окислителя, баком системы реактивного управления, баком горючего и двигателем. В боковых гаргротах находятся проводка, некоторые элементы оборудования и ниши уборки главных стоек шасси. Шасси – трехстоечное, убираемое вперед. Передняя стойка - со спаренными колесами, главные - со стальными лыжами, заменяемыми после 5-6 посадок. Для перемещения по аэродрому задняя часть фюзеляжа устанавливается на специальной тележке.

Основной целью проводившихся на North American X-15 экспериментов являлось исследование условий полёта на больших скоростях в верхних слоях земной атмосферы, и прежде всего исследование влияния больших скоростей и высоких температур на конструкцию планера и механические свойства материалов, оценка надежности контрольно-измерительной аппаратуры, управляемости самолета, связи с контрольными пунктами, реакции человека на состояние невесомости и перегрузок при возвращении на землю и т.п. Все это обусловило применение разнообразного оборудования и специальной конструкции планера самолёта. Контрольно-измерительная аппаратура самолёта (массой около 600 кг) насчитывала 650 датчиков температуры, 104 датчика аэродинамических сил и 140 датчиков давления, регистратор показаний 15 приборов кабины пилота, регистратор физиологических измерений и т.д. Все измеряемые данные посредством телеметрии передавались на землю.

Для обеспечения работоспособности конструкции в условиях аэродинамического нагрева планер был выполнен из нержавеющей стали, сплавов никеля, титана и других жаропрочных материалов. Наибольшее применение нашел сплав инконель-Х, сохраняющий свои прочностные характеристики до температуры 590°С. Из него были выполнены обшивка, лонжероны крыла и переборки внутри баков, а также толстые носки крыла и оперения. Характерной особенностью планера North American X-15 является широкое применение сварки. Этим методом выполнено около 65% всех соединений. Для лучшего отвода тепла с поверхности самолет покрашен специальной черной силиконовой краской, которая кратковременно способна выдерживать воздействие температуры до 540°С. Самолёт рассчитан на семикратные перегрузки (выполнение маневров в атмосфере допускается с перегрузкой 4).

На первом опытном образце North American X-15 (№2) были опробованы (в разных полетах) два четырехкамерных ракетных двигателя на жидком топливе фирмы «Reaction Motors» XLR-11 тягой 35,59 кН x 4 (3629 кГ x 4). На следующих двух опытных образцах уже устанавливались однокамерные двигатели (XLR99-RM-1 – на одном и XLR99-RM-2-Ha другом). На высоте 13 700 м однокамерный двигатель развивал максимальную тягу 253,55 кН (25 855 кГ); он имел диапазон регулирования тяги от 102,31 кН (10 433 кГ) до 266,90 кН (27 216 кГ). Двигатель XLR-11 работал на спирте и жидком кислороде (по аналогии с самолетами Х-1), а двигатель XLR99-RM-l/2-Ha аммиаке и жидком кислороде. Внутренняя топливная система емкостью 8615 кг в опытном образце Х-15А-2 была дополнена двумя подвесными баками (длиной 6,70 м и диаметром 0,96 м) общей емкостью 6123 кг (2724 кг аммиака и 3399 кг кислорода).

Заправка топливом осуществляется перед стартом North American X-15 с борта самолета-носителя В-52А. Во время работы двигателя топливо сначала расходуется из подвесных баков, которые после опорожнения сбрасываются на парашютах. Использование дополнительных топливных баков позволило увеличить время работы двигателя с 84 до 150 с. Для привода вспомогательных устройств (системы управления, шасси, автоматики) используются два турбонасосных агрегата, работающие на продуктах разложения перекиси водорода, которые располагаются за кабиной пилота. Кроме баков аммиака, жидкого кислорода и перекиси водорода в фюзеляже (и в его хвостовом отсеке, над соплом двигателя в опытном образце Х-15А-2) размещены баллоны со сжатым гелием, используемым для наддува топливных баков, продувки двигателя и аварийного слива топлива, и жидким азотом, используемым в системе охлаждения кабины.

Тактико-технические характеристики North American X-15
Экипаж 1
Размах крыла, м 6.71
Длина, м 15.24
Высота, м 4.12
Площадь крыла, м2 18.58
Масса, кг
- пустого самолета 6350
- максимальная взлетная 15422
Тип двигателя 1 РД Reaction Motors (Thiokol) XLR99-RM-2
Тяга,кгс 1 х 25855
Максимальная скорость, км/ч 6600
Динамический потолок, м 95900

Х-15 был первым и долгое время единственным пилотируемым гиперзвуковым летательным аппаратом, совершавшим суборбитальные пилотируемые космические полёты

В 1955 году учёные впервые запустили ракетоплан - аппарат, обладавший способностью лететь (и приземляться!) с выключенным двигателем со скоростью более 6000 км/ч и на протяжении 12 минут. Самолёт совершил всего 9 полётов, после чего случилась трагедия: ракетоплан внезапно стал неуправляемым и разрушился прямо в воздухе. Пилота-испытателя Майкла Адамса посмертно удостоили звания астронавта, а проект X-15 - закрыли.

Что ни говори, но эпоха 50-х - 60-х годов была временем, когда человечество серьезно раздвинуло границы возможного. В течении этого периода люди слетали на Луну, покорили Марианскую впадину, совершили прыжки с парашютом фактически из космоса и всерьез рассматривали возможность создания межпланетного ядерного взрыволета. Забавно, что лишь сейчас, в 21 веке, человечество смогло повторить некоторые (и то не все) из достижений 60-летней давности.

История известного ракетоплана Х-15 думаю отлично вписывается в ту эпоху. Еще до первого полета человека в космос, конструкторы стояли на своеобразном распутье - с одной стороны, существовала схема, ставшая сейчас общепринятой: космический корабль выводится на орбиту многоступенчатой ракетой, а затем после выполнения всех работ космонавты возвращаются на Землю в спускаемой капсуле.

С другой стороны, разрабатывался целый ряд проектов орбитальных самолетов, у которых были свои преимущества над схемой с одноразовым космическом кораблем. Концепцией аппарата, способного маневрировать в атмосфере и садиться на обычный аэродром особенно интересовались военные - в США в частности существовала программа боевого космоплана «Dyna Soar», сочетавшего в себе функции бомбардировщика, разведчика и истребителя. В СССР имелись аналогичные проекты.

Ракетоплан North American Х-15, работы над которым начались еще в середине 50-х, создавался в эту переломную эпоху с целью изучение условий в верхних слоях атмосферы и отработки технологий полета на гиперзвуковых скоростях и последующего возвращения на Землю крылатых аппаратов.

Его длина составляла 15 метров, размах крыльев 6.5 метров, вес 6620 килограмм (пустого) и 15400 килограмм (полностью заправленного). Основные достижения Х-15 связаны с ракетным двигателем XLR 99, чья максимальная тяга составляла 27 тонн. За 80 секунд работы, движок сжигал 7 тонн топлива, что позволяло достичь аппарату гиперзвуковых скоростей в 5-6 Мах.

Поскольку время работы двигателя было крайне ограничено по времени, X-15 запускался по технологии воздушного старта - заправленная машина с летчиком в кабине подвешивалась под правым крылом специально переоборудованного бомбардировщика B-52. Первый полет в режиме планирования состоялся в июне 1959 года, первый полет с работающим двигателем - 17 сентября того же года - то есть 55 лет назад.

Схема самых известных полетов Х-15 выглядела следующим образом. Ракетоплан сбрасывался с бомбардировщика летящего на скорости 900 км/ч на высоте около 13 500 метров. После отделения от В-52, летчик включал ракетный двигатель и выдерживал необходимый угол атаки. На этом этапе перегрузка могла доходить до 4G. Двигатель выключался через 85-90 секунд после запуска - к этому момент ракетоплан достигал скорости 1900 м/сек и высоты примерно 50 километров. После этого, самолет летел по баллистической траектории с углом атаки равным нулю и в это время летчик находился в состоянии невесомости. Максимальная продолжительность периода невесомости составляла 4 минуты.

Затем происходил вход в плотные слои атмосферы - при этом внешняя обшивка аппарата местами нагревалась до 650 градусов, а перегрузки достигли 5 G в течение 20 секунд (всего же конструкция самолета была рассчитана на перегрузки в 7G). Общее время полёта от момента отделения от носителя до приземления составляло 12 минут.<

Максимальная скорость X-15 была достигнута 3 октября 1967 года - она составила 7,274 километров в час (6.7 Мах). Если не ошибаюсь, этот рекорд до сих пор не превзойден - хотя конечно стоит отметить, что ФАИ официально его не зарегистрировала, так как Х-15 взлетал не самостоятельно.

Что касается максимальной высоты полеты, то дважды ракетоплан преодолевал отметку в 100 километров, которая считается той же ФАИ официальной границей между атмосферой и космосом. Оба раза за штурвалом был Джозеф Уокер. 19 июля 1963 года он поднялся на высоту в 106 километров, а месяцем спустя на высоту в 107.9 километра - лишь в 2004 году SpaceShipOne превзошел это достижение на 3 километра. Еще в 11 полетах Х-15 подымался на высоту свыше 50 миль (80 километров), которая на тот момент считалась в ВВС США границей космоса - соответственно, пилоты получили статус астронавтов. В остальном мире эти полеты космическими понятное дело никто не признал, но как бы то ни было, даже по нынешним меркам это достижение смотрится весьма солидно.

Всего на Х-15 летали двенадцать человек, в их которых был Нил Армстронг. В период с 1959 по 1968 год было осуществлено 199 полетов. Буковка X в обозначении аппарата обозначает экспериментальный, что предполагает повышенную опасность полетов на нем. Потому неудивительно, что за эти годы с ракетопланом несколько раз случались аварии, однако до поры до времени обходилось без жертв, а технику удавалось вернуть в строй. Но 15 ноября 1967 года произошла катастрофа - Х-15 под управлением Майкла Адамса погиб при входе в атмосферу. Считается, что из-за вышедших из строя приборов пилот потерял управление, после чего ракетоплан испытал перегрузку в 15G, на которую не был рассчитан и развалился на части.

Менее чем через год после этого программа была закрыта. К тому моменту «Dyna Soar», как и другие проекты орбитальных самолетов уже были благополучно похоронены. Ставка была сделана на схему с одноразовым космическим кораблем, и все усилия и ресурсы на тот момент времени были сосредоточены на лунной гонке. К тому же, пресса подняла шумиху вокруг катастрофы Х-15 и того, насколько аппарат опасен для пилотов, и в результате программа не получила дополнительного финансирования и в 1968 была официальна закрыта. Сейчас оба оставшихся ракетоплана выставлены в музеях.

Ныне данная программа служит еще одним напоминанием об эпохе начала космической эры и том, какие пути развития техники рассматривались в то время. В любом случае, за 9 лет полетов X-15 был накоплен огромный массив информации, который затем активно использовался при работе над Спейс Шаттлом, и думаю, еще найдет свое применение в будущем.

Читайте также: