Оборудование и технология ионного азотирования. Ионное азотирование деталей из аустенитных сталей

И ндустриальные развитые производства сегодня отдают предпочтения химико-термической обработке, в частности ионно-плазменному азотированию (далее ИПА), выгодно отличающемуся с экономической точки зрения от термических технологий. Сегодня ИПА активно используется в машино-, судо и станкостроении, промышленности сельскохозяйственного и ремонтного назначения, для производства установок энергетической отрасли. Среди предприятий, активно использующих технологию ионно-плазменного азотирования такие громкие имена, как немецкий концерн Daimler Chrysler, автомобильный гигант BMW, шведский Volvo, белорусский завод колесных тягачей, КамАЗ и БелАЗ. Кроме того, преимущество ИПА по достоинству оценили производители прессовых инструментов: Skandex, Нугховенс.

Технология процесса

Ионно-плазменное азотирование, применяемое для рабочих инструментов, деталей машин, оборудования для штамповки и литья, обеспечивает насыщение поверхностного слоя изделия азотом или азотно-углеродной смесью (в зависимости от материала заготовки). Установки для ИПА работают в разряженной атмосфере при давлении до 1000 Па. В камеру, действующую по принципу катодно-анодной системы, подается азотно-водородная смесь для обработки чугуна и различных сталей или чистый азот в качестве рабочего газа для работы с титаном и его сплавами. Катодом служит заготовка, анодом - стенки камеры. Возбуждение аномально тлеющего заряда инициирует образование плазмы и, как следствие, активной среды, включающей в себя заряженные ионы, атомы и молекулы рабочей смеси, находящиеся в возбужденном состоянии. Низкое давление обеспечивает равномерное и полноценное покрытие заготовки свечением. Температура плазмы колеблется от 400 до 950 градусов в зависимости от рабочего газа.

Для ионно-плазменного азотирования требуется в 2-3 раза меньше электроэнергии, а качество поверхности обработанного изделия позволяет вовсе исключить стадию финишной шлифовки

Формирующаяся на поверхности пленка состоит из двух слоев: нижнего диффузионного и верхнего нитридного. Качество модифицированного поверхностного слоя и экономическая эффективность процесса в целом зависит от ряда факторов, включая состав рабочего газа, температуру и продолжительность процесса.

Обеспечение стабильной температуры упирается в процессы теплообмена, происходящие непосредственно внутри камеры для ИПА. Для снижения интенсивности обменных процессов со стенками камеры используются специальные, непроводящие тепло экраны. Они позволяют значительно сэкономить на потребляемой мощности. Температура процесса вкупе с длительностью влияют на глубину проникновения нитридов, что вызывает изменения в графике глубинного распределения показателей твердости. Температура ниже 500 градусов наиболее оптимальная для азотирования легированных сталей холодной обработки и мартенситных материалов, поскольку эксплуатационные характеристики повышаются без изменения твердости сердцевины и термического разрушения внутренней структуры.
Состав активной среды влияет на конечную твердость и размер нитридной зоны и зависит от состава обрабатываемого изделия.

Результаты применения ионно-плазменного азотирования

Ионно-плазменное азотирование позволяет повысить показатели износостойкости с одновременным снижением склонности к усталостным нарушениям структуры металла. Получение необходимых поверхностных свойств определяется соотношением глубины и состава диффузионного и нитридного слоев. Нитридный слой, исходя из химического состава, принято делить на две определяющие фазы: «гамма» с высоким процентным содержанием соединений Fe4N и «ипсилон» с Fe2N Fe3N. -фаза отличается низкой пластичностью поверхностного слоя с высокими показателями сопротивления различным типам коррозии, ε-фаза дает относительно пластичное износостойкое покрытие.

Что касается диффузионного слоя, то прилегающая развитая нитридная зона снижает вероятность образования межкристаллитной коррозии, обеспечивая достаточный для активного трения квалитет шероховатости. Детали с таким соотношением слоев с успехом используются в механизмах, работающих на износ. Исключение нитридного слоя позволяет препятствовать разрушению при постоянной смене силы нагрузки при условиях достаточно высокого давления.

Т.о. ионно-плазменное азотирование используется для оптимизации показателей износо-, тепло- и коррозионной стойкости с изменением усталостной выносливости и шероховатости, влияющей на вероятность задира поверхностного слоя.

Преимуществаионно-плазменного азотирования

Ионно-плазменное азотирование в отлаженном техпроцессе дает минимальный разброс поверхностных свойств от детали к детали при относительно низкой энергоемкости, что делает ИПА более привлекательным, нежели традиционное печное газовое азотирование, нитроцементацию и цианирование.

Ионно-плазменное азотирование исключает деформацию заготовки, а структура азотированного слоя остается неизменной даже при нагреве детали до 650 градусов, что вкупе с возможностью тонкой корректировки физико-механических свойств позволяет использовать ИПА для решения самых разнообразных задач. Кроме того, азотирование ионно-плазменным методом отлично подходит для обработки сталей разных марок, поскольку рабочая температура процесса в азотно-углеродной смеси не превышает 600 градусов, что исключает нарушения внутренней структуры и даже наоборот - способствует снижение вероятности усталостных разрушений и повреждений из-за высокой хрупкости нитридной фазы.

Для повышения антикоррозионных показателей и поверхностной твердости методом ионно-плазменного азотирования подходят заготовки любой формы и размеров со сквозными и глухими отверстиями. Экранная защита от азотирования не представляет собой сложное инженерное решение, поэтому обработка отдельных участков любой формы производится легко и просто.

Относительно других методов упрочнения и повышения межкристаллитной стойкости ИПА отличается сокращенной в несколько раз длительностью техпроцесса и уменьшенным на два порядка расходом рабочего газа. Т.о. для ионно-плазменного азотирования требуется в 2-3 раза меньше электроэнергии, а качество поверхности обработанного изделия позволяет вовсе исключить стадию финишной шлифовки. Кроме того, существует возможность провести обратный азотированию процесс, например перед шлифовкой.

Эпилог

К сожалению, на фоне даже ближнего зарубежья отечественные производственники используют азотирование ионно-плазменным методом довольно редко, хотя экономические и физико-механические преимуществ видны невооруженным глазом. Внедрение на производство ионно-плазменного азотирования улучшает условия труда, повышает производительность и снижает стоимость работ, при этом ресурс службы обработанного изделия увеличивается в 5 раз. Как правило, вопрос построения техпроцессов с использованием установок для ИПА упирается в проблему финансового плана, хотя субъективно реальных препятствий нет. Ионно-плазменное азотирование при достаточно простой конструкции оборудования выполняет сразу несколько операций, реализация которых другими методами возможна лишь поэтапно, когда стоимость и продолжительность резко поползут вверх. Кроме того, есть несколько компаний в России и Беларуси, сотрудничающих с зарубежными производителями оборудования для ИПА, что делает покупку таких установок доступнее и дешевле. Видимо, главная проблема заключается лишь в банальном принятии решения, которое, как русская традиция, родится у нас долго и трудно.

А.В. АРЗАМАСОВ
МГТУ им. Н. Э. Баумана
ISSN 0026-0819. «Металловедение и термическая обработка металлов», № 1. 1991 г.

Разработка новых производственных процессов ионного азотирования с целью повышения износостойкости поверхности деталей, изготовленных из аустенитных сталей, является актуальной задачей

Аустенитные стали относятся к трудноазотируемым, так как их поверхностные оксидные пленки препятствуют насыщению азотом и коэффициент диффузии азота в аустените меньше, чем в феррите. В связи с этим для удаления оксидных пленок при обычном азотировании необходима предварительная обработка поверхности стали или применение депассиваторов.

Обычное азотирование большинства аустенитных сталей проводят в аммиаке при 560-600 °С в течение 48-60 ч. Однако эти режимы не позволяют получить диффузионные слои толщиной более 0,12-0,15 мм, а на стали 45Х14Н14В2М (ЭИ69) невозможно получить толщину диффузионного слоя более 0,12 мм даже при азотировании в течение 100 ч. Повышение температуры азотирования в печи выше 700 °С приводит к более полной диссоциации аммиака и, вследствие этого, к понижению активности процесса.

Как правило, после обычного азотирования ухудшается коррозионная стойкость поверхностных слоев аустенитных сталей .

Ионное азотирование аустенитных сталей способствует увеличению коэффициента диффузии азота и не требует применения депассиваторов. При этом сокращается длительность процесса и улучшается качество получаемых азотированных слоев .

Однако ионное азотирование аустенитных сталей по ранее разработанным режимам не позволяло получать диффузионные слои большой толщины даже при длительных выдержках

На основании термодинамических расчетов и экспериментальных исследований был разработан режим ионного азотирования деталей из аустенитных сталей, позволяющий получать качественные глубокие износостойкие немагнитные коррозионно-стойкие диффузионные слои в сравнительно короткое время. Оксидные пленки удалялись с поверхности деталей в процессе химико-термической обработки .

Исследовали стандартные аустенитные стали 45Х14Н14В2М (ЭИ69), 12Х18Н10Т (ЭЯ1Т); 25Х18Н8В2 (ЭИ946) и опытные высокоазотистые, разработанные Институтом металловедения и технологии металлов Болгарской Академии наук - типа Х14АГ20Н8Ф2М (0,46% N), Х18АГ11Н7Ф (0,70% N), Х18АГ12Ф (0,88% N), Х18АГ20Н7Ф (1,09% N), Х18АГ20Ф (1,02% N), Х18АГ20Ф (2,00% N) .

Исследование структуры диффузионных слоев на сталях проводили с помощью металлографического, рентгеноструктурного и микрорентгеноспектрального анализов. Установлено, что структурным критерием высокой износостойкости азотированных аустенитных сталей является наличие в диффузионном слое нитридов типа CrN. Анализ концентрационных кривых химических элементов, полученных с помощью микроанализаторов ISM-35 CF, Cameca MS-46, Camebax 23-APR-85 показал, что по сравнению с другими тяжелыми элементами хром наиболее скачкообразно распределяется по толщине слоя. В сердцевине образцов распределение хрома равномерное.

Неоднократное повторение экспериментов по исследованию распределения азота и хрома по толщине диффузионного слоя выявило синхронные скачкообразные изменения их концентраций. Кроме того, как показали послойные испытания на изнашивание, наибольшую износостойкость имеет микрозона диффузионного слоя с максимальным содержанием азота и хрома (табл. 1).

Таблица 1.

h, мкм Содержание химических элементов, % ε
C N Cr Ni
20 0,70 10,0 19,0 11,0 9,5
40 0,85 12,0 25,0 8,0 10,7
45 0,88 15,0 25,0 8,0 11,2
50 0,92 10,0 25,0 8,0 11,0
70 0,90 0 14,0 12,0 1,7
* — остальное Fe
Примечания: 1. Испытания на изнашивание проводили на машине «Шкода-Савин».
2. Относительную износостойкость определяли по отношению объёмов вытертых лунок на эталоне (стальной образец с твёрдостью 51 HRC) и исследуемом образце ε = V эт /V обр (относительная износостойкость сердцевины ε=0,08).

Дальнейшее исследование структуры азотированных аустенитных сталей с помощью микрорентгеноспектрального анализа позволило установить, что в микрозонах диффузионных слоев с повышенным содержанием азота и хрома наблюдается пониженная концентрация углерода, никеля и железа (табл. 1).

Сравнительный анализ микроструктуры слоя и сердцевины азотированной стали 45Х14Н14В2М, снятой в характеристическом хромовом К α -излучении показал, что в диффузионном слое содержится больше скоплений «белых точек» - соединений хрома, чем в сердцевине.

Послойные измерения магнитной проницаемости с помощью магнетоскопа F 1.067 и определение содержания ферритной фазы на ферритометре МФ-10И показали, что разработанный способ ионного азотирования деталей из аустенитных сталей способствует получению немагнитных диффузионных слоев (табл. 2).

Таблица 2.

Было также установлено, что азотированные стали 45Х14Н14В2М и типа Х14АГ20Н8Ф2М имеют удовлетворительную коррозионную стойкость.

По новому технологическому процессу была обработана партия шестерен, изготовленных из стали 45Х14Н14В2М. Детали соответствовали техническим требованиям. Микро- и макроструктурный анализ подтвердил наличие у шестерен качественного равномерного диффузионного слоя толщиной 270 мкм.

После длительных промышленных испытаний видимых дефектов на шестернях не обнаружено. Дальнейший контроль показал соответствие геометрических размеров шестерен технологическим требованиям, а также отсутствие изнашивания рабочих поверхностей деталей, что было подтверждено микроструктурным анализом.

Заключение. Разработанный режим ионного азотирования деталей из аустенитных сталей позволяет сократить длительность процесса более чем в 5 раз, при этом толщина слоя увеличивается в 3 раза, а износостойкость слоя - в 2 раза по сравнению с аналогичными параметрами после обычного азотирования. Кроме того, снижается трудоемкость, повышается культура производства и улучшается экологическая обстановка.

Список литературы:
1. Прогрессивные методы химико-термической обработки / Под ред. Г. Н. Дубинина, Я. Д. Когана. М.: Машиностроение, 1979. 184 с.
2. Азотирование и карбонитрирование / Р. Чаттерджи-Фишер, Ф. В. Эйзелл, Р. Хоффман и др.: Пер. с нем. М.: Металлургия, 1990. 280 с.
3. А. с. 1272740 СССР, МКИ С23С8/36.
4. Банных О. А., Блинов В. М. Дисперсионно-твердеющие немагнитные ванадийсодержащие стали. М.: Наука, 1980. 192 с.
5. Рашев Ц. В. Производство легированной стали. М.: Металлургия, 1981. 248 с.

20.01.2008

Ионно-плазменное азотирование (ИПА)- это разновидность химико-термической обработки деталей машин, инструмента, штамповой и литьевой оснастки, обеспечивающая диффузионное насыщение поверхностного слоя стали (чугуна) азотом или азотом и углеродом в азотно-водородной плазме при температуре 450-600 °С, а также титана или титановых сплавов при температуре 800-950 °С в азотной плазме.

Суть ионно-плазменного азотирования заключается в том, что в разряженной до 200-000 Па азотсодержащей газовой среде между катодом, на котором располагаются обрабатываемые детали, и анодом, роль которого выполняют стенки вакуумной камеры, возбуждается аномальный тлеющий разряд, образующий активную среду (ионы, атомы, возбужденные молекулы). Это обеспечивает формирование на поверхности изделия азотированного слоя, состоящего из внешней - нитридной зоны с располагающейся под ней диффузионной зоной.

Варьируя состав насыщающего газа, давление, температуру, время выдержки можно получать слои заданной структуры с требуемым фазовым составом, обеспечивая строго регламентируемые свойства сталей, чугунов, титана или его сплавов. Оптимизация свойств упрочняемой поверхности обеспечивается за счет необходимого сочетания нитридного и диффузионного слоев, которые врастают в основной материал. В зависимости от химического состава нитридный слой является либо y-фазой (Fe4N) либо e-фазой (Fe2-3N). e-нитридный слой является коррозийно-стойким, а y-слой - износостойким, но относительно пластичным.

При этом с помощью ионно-плазменного азотирования возможно получение:

    диффузионного слоя с развитой нитридной зоной, обеспечивающей высокую сопротивляемость коррозии и прирабатываемость трущихся поверхностей - для деталей, работающих на износ

    диффузионного слоя без нитридной зоны - для режущего, штампового инструмента или деталей, работающих при высоких давлениях со знакопеременными нагрузками.

Ионно-плазменным азотированием можно улучшить следующие характеристики изделий:

    износостойкость

    усталостную выносливость

    антизадирные свойства

    теплостойкость

    коррозионную стойкость

Основным достоинством метода является стабильное качество обработки с минимальным разбросом свойств от детали к детали, от садки к садке. В сравнении с широко используемыми способами упрочняющей химико-термической обработки стальных деталей, такими, как цементация, нитроцементация, цианирование, газовое азотирование метод ионно-плазменного азотирования имеет следующие основные преимущества:

    более высокая поверхностная твердость азотированных деталей

    отсутствие деформации деталей после обработки

    повышение предела выносливости с увеличением износостойкости обработанных деталей

    более низкая температура процесса, благодаря чему у обрабатываемых деталей отсутствуют структурные изменения

    возможность обработки глухих и сквозных отверстий

    сохранение твердости азотированного слоя после нагрева до 600 - 650 °С

    возможность получения слоев заданного состава

    возможность обработки изделий неограниченных размеров любой формы

    отсутствие загрязнения окружающей среды

    повышение культуры производства

    снижение себестоимости обработки в несколько раз

Преимущества ионно-плазменного азотирования проявляются в существенном сокращении основных издержек производства. Так например, по сравнению с газовым азотированием ИПА обеспечивает:

    сокращение продолжительности обработки от 2 до 5 раз, как за счет снижения времени нагрева - охлаждения садки, так и за счет уменьшения времени изотермической выдержки

    сокращение расхода рабочих газов (20 - 100 раз)

    сокращение расхода электроэнергии (1,5 - 3 раза)

    снижение деформации настолько, чтобы исключить финишную шлифовку

    улучшение санитарно-гигиенических условий производства

    полное соответствие технологии всем современным требованиям по охране окружающей среды

По сравнению с закалкой обработка методом ионно-плазменного азотирования позволяет:

    исключить деформации

    увеличить ресурс работы азотированной поверхности (2-5 раз)

Применение ионно-плазменного азотирования вместо цементации, нитроцементации, газового или жидкостного азотирования, объемной или ТВЧ закалки позволяет:

    сэкономить основное оборудование и производственные площади

    снизить станочные расходы, транспортные затраты

    уменьшить расход электроэнергии, активных газовых сред.

Основными потребителями оборудования для ионно-плазменного азотирования являются автомобильные, тракторные, авиационные, судостроительные, судоремонтные, машино- / станкостроительные заводы, заводы по производству сельскохозяйственной техники, насосного и компрессорного оборудования, шестерен, подшипников, алюминиевых профилей, энергетических установок...

Метод ионно-плазменного азотирования является одним из наиболее динамично развивающихся направлений химико-термической обработки в индустриально развитых странах. Широкое применение метод ИПА нашел в автомобилестроении. Он с успехом применяется ведущими авто- / моторостроительными предприятиями мира: Daimler Chrysler (Mercedes), Audi, Volkswagen, Voith, Volvo.
Например, данным методом обрабатываются следующие изделия:

    форсунки для легковых автомобилей, несущие пластины автоматического привода, матрицы, пуансоны, штампы, пресс-формы (Daimler Chrysler)

    пружины для системы впрыска (Opel)

    коленчатые валы (Audi)

    распределительные (кулачковые) валы (Volkswagen)

    коленчатые валы для компрессора (Atlas, США и Wabco, Германия)

    шестерни для BMW (Handl, Германия)

    автобусные шестерни (Voith)

    упрочнения прессового инструмента в производстве алюминиевых изделий(Нугховенс, Скандекс, Джон Девис и др.)

Есть положительный опыт промышленного использования данного метода странами СНГ: Беларусь - МЗКТ, МАЗ, БелАЗ; Россия - АвтоВАЗ, КамАЗ, ММПП « Салют », Уфимское моторостроительное объединение (УМПО).
Методом ИПА обрабатываются:

    шестерни (МЗКТ)

    шестерни и другие детали (МАЗ)

    шестерни большого (более 800 мм) диаметра (БелАЗ)

    впускные и выпускные клапаны (АвтоВАЗ)

    коленчатые валы (КамАЗ)

Как показывает мировой опыт применения технологии ионно-плазменного азотирования, экономический эффект от ее внедрения обеспечивается, главным образом, за счет снижения расхода электроэнергии, рабочих газов, сокращения трудоемкости изготовления изделий из-за существенного уменьшения объема шлифовальных работ, повышения качества продукции.

В отношении режущего и штампового инструмента, экономический эффект обеспечивается за счет снижения его расхода в силу повышения в 4 и более раз его износостойкости с одновременным увеличением режимов резания.

Для некоторых изделий ионное-плазменное азотирование является единственным способом получения готового изделия с минимальным процентом брака.

Кроме того, процесс ИПА обеспечивает полную экологическую безопасность.

Ионно-плазменное азотирование может использоваться на производстве взамен жидкостного или газового азотирования, цементации, нитроцементации, ТВЧ-закалки.

Материаловедение: конспект лекций Алексеев Виктор Сергеевич

7. Химико-термическая обработка: азотирование, ионное азотирование

Химико-термическая обработка – азотирование применяется с целью повышения твердости поверхности у различных деталей – зубчатых колес, гильз, валов и др. изготовленных из сталей 38ХМЮА, 38ХВФЮА, 18Х2Н4ВА, 40ХНВА и др. Азотирование – последняя операция в технологическом процессе изготовления деталей. Перед азотированием проводят полную термическую и механическую обработку и даже шлифование, после азотирования допускается только доводка со съемом металла до 0,02 мм на сторону. Азотированием называется химико-термическая обработка, при которой происходит диффузионное насыщение поверхностного слоя азотом. В результате азотирования обеспечиваются: высокая твердость поверхностного слоя (до 72 HRC), высокая усталостная прочность, теплостойкость, минимальная деформация, большая устойчивость против износа и коррозии. Азотирование проводят при температурах от +500 до +520 °C в течение 8–9 ч. Глубина азотированного слоя – 0,1–0,8 мм. По окончании процесса азотирования детали охлаждают до +200–300 °C вместе с печью в потоке аммиака, а затем – на воздухе.

Поверхностный слой не поддается травлению. Глубже него находится сорбитообразная структура. В промышленности широко применяется процесс жидкостного азотирования в расплавленных цианистых солях. Толщина азотированного слоя – 0,15-0,5 мм.

Азотированный слой не склонен к хрупкому разрушению. Твердость азотированного слоя углеродистых сталей – до 350 HV, легированных – до 1100 HV. Недостатки процесса – токсичность и высокая стоимость цианистых солей.

В ряде отраслей промышленности используется ионное азотирование, которое имеет ряд преимуществ перед газовым и жидкостным. Ионное азотирование осуществляется в герметичном контейнере, в котором создается разреженная азотсодержащая атмосфера. Для этой цели применяются чистый азот, аммиак или смесь азота и водорода. Размещенные внутри контейнера детали подключают к отрицательному полюсу источника постоянной электродвижущей силы Они выполняют роль катода. Анодом служит корпус контейнера. Между анодом и катодом включают высокое напряжение (500-1000 В) – происходит ионизация газа. Образующиеся положительно заряженные ионы азота устремляются к отрицательному полюсу – катоду. Возле катода создается высокая напряженность электрического поля. Высокая кинетическая энергия, которой обладали ионы азота, переходит в тепловую. Деталь за короткое время (15–30 мин) разогревается до от +470 до +580 °C, происходит диффузия азота вглубь металла, т. е. азотирование.

Ионное азотирование по сравнению с азотированием в печах позволяет сократить общую продолжительность процесса в 2–3 раза, уменьшить деформацию деталей за счет равномерного нагрева.

Ионное азотирование коррозионно-стойких сталей и сплавов достигается без дополнительной депассивирующей обработки. Толщина азотированного слоя – 1 мм и более, твердость поверхности – 500-1500 HV. Ионному азотированию подвергают детали насосов, форсунок, ходовые винты станков, валы и многое другое.

Данный текст является ознакомительным фрагментом. Из книги автора

Обработка металла Обработка металла включает в себя достаточно большое число работ различного вида, но каждая из них начинается с подготовки поверхности, которую предстоит обрабатывать. Что значит обработать металлическую деталь? Прежде всего проверить ее размеры и

Из книги автора

Обработка отверстий Сверление металлаПожалуй, трудно себе представить изготовление и сборку какого-либо механизма без того, чтобы не возникла необходимость в сверлении и дальнейшей обработке отверстий. Да и в других направлениях слесарного производства, будь то

Из книги автора

Термическая обработка готовых изделий Термическая обработка проводится с готовой уже поковкой и служит для того, чтобы изменить структуру металла. От правильного ее выполнения зависит качество изделия и его долговечность.ЗакалкаОна предназначена для придания

Из книги автора

Обработка сигналов При выборе типа сенсорного устройства, используемого в роботе, необходимо решить вопрос чтения и обработки сигнала, поступающего от него. Vjui Многие сенсоры представляют собой датчики резистивного типа, что означает, что их сопротивление меняется в

Из книги автора

6. Химико-термическая обработка: цементация, нитроцементация Для изменения химического состава, структуры и свойств поверхностного слоя деталей осуществляется их тепловая обработка в химически активной среде, называемая химико-термической обработкой. При ней

Из книги автора

1. Углеродистые и легированные конструкционные стали: назначение, термическая обработка, свойства Из углеродистых качественных конструкционных сталей производят прокат, поковки, калиброванную сталь, сталь-серебрянку, сортовую сталь, штамповки и слитки. Эти стали

Из книги автора

Термическая обработка Термической обработкой называется процесс тепловой обработки, суть которого в нагреве стекла до определенной температуры, выдержке при этой температуре и последующем охлаждении с заданной скоростью с целью изменения или свойств стекла, или формы

Из книги автора

6. Термическая обработка ювелирных сплавов. Общие положения Термическая обработка включает следующие основные операции: отжиг, закалку, старение и отпуск (для черных металлов). Применение того или другого вида термообработки диктуется теми требованиями, которые

Из книги автора

6.1. Термическая обработка литейных сплавов Согласно классификатору ювелирных сплавов (рис. 3.36) основными являются благородные сплавы на серебряной, золотой и платиновой основах, а также медные, алюминиевые и цинковые сплавы. Преимущественными операциями термообработки

Из книги автора

13. Термическая обработка ювелирных сплавов Основной вид термической обработки ювелирных сплавов – рекристаллизационный отжиг. Он назначается или как промежуточный этап между операциями холодной пластической деформации, или как заключительный – для того, чтобы

Из книги автора

13.1. Термическая обработка сплавов на основе серебра Термически обрабатываются сплавы системы Ag – Си, так как медь ограниченно растворима в серебре и ее растворимость изменяется с температурой.Режим термообработки состоит в закалке сплава с температурой 700 °C в воде с

Из книги автора

13.2. Термическая обработка сплавов на основе золота Двойные сплавы золото – серебро термически не упрочняемые, так как серебро и золото неограниченно растворимы в твердом состоянии.Тройные сплавы системы Au – Ag – Си упрочняются термической обработкой. Эффект упрочнения

Из книги автора

7.3.1. ЭЛЕКТРОЭРОЗИОННАЯ ОБРАБОТКА Электрическая эрозия, т.е. разрушение контактов под действием электрических разрядов известна была давно. Много исследований было посвящено устранению или хотя бы уменьшению разрушения контактов.Исследованиями явления управляемой

Из книги автора

38. Химико-термическая обработка стали. Назначение, виды и общие закономерности. Диффузионное насыщение сплавов металлами и неметаллами Химико-термической обработка (ХТО) – обработка с сочетанием термического и химического воздействия для изменения состава, структуры

Ионно-плазменное азотирование (ИПА) – современный упрочняющий метод химико-термической обработки изделий из чугуна, углеродистых, легированных и инструментальных сталей, титановых сплавов, металлокерамики, порошковых материалов. Высокая эффективность технологии достигается путём использования разных газовых сред, влияющих на образование диффузионного слоя различного состава в зависимости от конкретных требований к его глубине и твёрдости поверхности.

Азотирование ионно-плазменным методом актуально для обработки нагруженных деталей, работающих в агрессивных средах, подвергающихся трению и химической коррозии, поэтому широко применяется в машиностроительной отрасли, включая станкостроение, авто- и авиационную промышленность, а также в нефтегазовом, топливно-энергетическом и горнодобывающем секторе, инструментальном и высокоточном производстве.

В процессе поверхностной обработки ионным азотированием улучшаются поверхностные характеристики металлов и эксплуатационная надёжность ответственных деталей машин, двигателей, станков, гидравлики, точной механики и прочих изделий: повышается усталостная и контактная прочность, поверхностная твёрдость и сопротивляемость к трещинообразованию, увеличивается износо-задиростойкость, тепло- и коррозионная стойкость.

Преимущества ионно-плазменного азотирования

Технология ИПА имеет ряд неоспоримых достоинств, основное из которых – стабильное качество обработки с минимальным разбросом свойств. Управляемый процесс диффузионного насыщения газа и нагрева обеспечивает равномерное покрытие высокого качества, заданного фазового состава и структуры.

  • Высокая поверхностная твёрдость азотированных деталей.
  • Отсутствие деформации деталей после обработки и высокая чистота поверхности.
  • Сокращение времени обработки сталей в 3-5 раз, титановых сплавов – в 5-10.
  • Повышение эксплуатации азотированной поверхности в 2-5 раз.
  • Возможность обработки глухих и сквозных отверстий.

Низкотемпературный режим исключает структурные превращения стали, снижает вероятность усталостных разрушений и повреждений, позволяет проводить охлаждение с любой скоростью без риска возникновения мартенсита. Обработка при температурах ниже 500 °С особенно эффективна при упрочнении изделий из инструментальных легированных, быстрорежущих и мартенситно-стареющих сталей: их эксплуатационные свойства повышаются без изменения твёрдости сердцевины (55-60 HRC).

Экологически безопасный метод ионно-плазменного азотирования предотвращает искривление и деформацию деталей при сохранении исходной шероховатости поверхности в пределах Ra=0,63…1,2 мкм – вот почему технология ИПА эффективна в качестве финишной обработки.

Технология процесса

Установки для ИПА работают в разряженной атмосфере при давлении 0,5-10 мбар. В камеру, действующую по принципу катодно-анодной системы, подаётся ионизированная газовая смесь. Между обрабатываемой заготовкой и стенками вакуумной камеры образуется тлеющий импульсный разряд. Созданная под его воздействием активная среда, состоящая из заряженных ионов, атомов и молекул, формирует на поверхности изделия азотированный слой.

Состав насыщающей среды, температура и продолжительность процесса влияют на глубину проникновения нитридов, вызывающих значительное увеличение твёрдости поверхностного слоя изделий.

Ионное азотирование деталей

Ионное азотирование широко применяется в целях упрочнения деталей машин, рабочих инструментов и технологической оснастки неограниченных типоразмеров и форм: зубчатых венцов, коленчатых и распределительных валов, конических и цилиндрических шестерён, экструдеров, муфт сложной геометрической конфигурации, шнеков, режущего и бурового инструмента, оправок, матриц и пуансонов для штамповки, пресс-форм.

Для ряда изделий (шестерён большого диаметра для большегрузных автомобилей, экскаваторов и т. д.) ИПА – единственный способ получения готовой продукции с минимальным процентом брака.

Свойства изделий после упрочнения методом ИПА

Упрочнение зубчатых колёс методом ионного азотирования повышает предел выносливости зубьев при испытаниях на усталость при изгибе до 930 МПа, значительно снижает шумовые характеристики станков и повышает их конкурентоспособность на рынке.

Технология ионно-плазменного азотирования широко применяется для упрочнения поверхностного слоя пресс-форм, используемых при литье под давлением: азотированный слой препятствует прилипанию металла в зоне подачи жидкой струи, и процесс заполнения формы становится менее турбулентным, что увеличивает срок службы пресс-форм, и обеспечивает высокое качество отливки.

Ионно-плазменное азотирование в 4 и более раз повышает износостойкость штампового и режущего инструмента, изготовленного из сталей марок Р6М5, Р18, Р6М5К5, Р12Ф4К5 и других, с одновременным увеличением режимов резания. Азотированная поверхность инструмента за счёт пониженного коэффициента трения обеспечивает более лёгкий отвод стружки, а также предотвращает её налипание на режущие кромки, что позволяет увеличить подачу и скорость резания.

Компания «Ионмет» оказывает услуги по поверхностному упрочнению конструкционных материалов различных типов деталей и инструмента методом ионно-плазменного азотирования – корректно подобранный режим позволит достигнуть необходимых технических показателей твёрдости и глубины азотированного слоя, обеспечит высокие потребительские свойства продукции.

  • Упрочнение поверхностного слоя мелкомодульных и крупномодульных зубчатых колёс, коленчатых и распределительных валов, направляющих, втулок, гильз, шнеков, цилиндров, пресс-форм, осей и т. д.
  • Повышение стойкости к циклической и пульсирующей нагрузке коленчатых и кулачковых валов, толкателей, клапанов, зубчатых колёс и т. д.
  • Повышение износостойкости и коррозионной стойкости, уменьшение прилипания металла при литье пресс-форм, прессовых и молотовых штампов, пуансонов для глубокой вытяжки, матриц.

Процесс азотирования происходит в современных автоматизированных установках:

  • Ø стола 500 мм, высотой 480 мм;
  • Ø стола 1000 мм, высотой 1400 мм.

Уточнить полную номенклатуру изделий для упрочняющей обработки, а также возможность азотирования крупногабаритных деталей со сложной геометрией можно у специалистов компании «Ионмет». Для определения технических условий азотирования и начала сотрудничества отправьте нам чертёж, укажите марки стали и примерную технологию изготовления деталей.

Читайте также: